D-A286 451
T




NTIS CRA&I
DTIC TAB

Unannounced
Justification _

Avail and/or
Special




DRAFT SF 298

1. Report Date (dd-mm-yy) 2. Report Type
10 Oct 94 conference proceedings

3. Dates covered (from... to )
29 June - 2 July 1994

4. Title & subtitle

4th International Symposium on Stratified Flows

5a. Contract or Grant #

N00014--94-J-8018

5b. Program Element #

—

6. Authori(s)

§c. Project# 5202

Emil Hopfinger, Bruno Voisin, Genevieve Chavand,

§5d. Task# EUR

editors

Se. Work Unit #

7. Performing Qrganization Name & Address

Laboratoire des Ecoulements Geophysiques et Industriels,
Institut de Mecanique de Grenobhle, B.P. 53 X - 38041
Grenoble Cedex 9

France

8. Performing Organization Report #

9. Sponsoring/Monitoring Agency Name & Address

Office of Naval Research Europe
PSC 802 BOX 39
FPC AX 09499-0700

1G. Monitor Acronym
ONREUR

11. Monitor Report #

12. Distribution/Availabiiity Statement A

13. Supplementary Notes 4 volumes

14, Abstract

15. Subjec .ms

stratified flows

19.

Limitation of
16. Report 17. Abstract 18. This Page Abstract
Unclassified Unclassified Unclassified

Unlimited

20. % of §21. Responsible Person
Pages (Name and Telephone #)

Mike Shear,
011-44-0171-514-4924

e - s




Thursday - June 30 — Morning

8:45 -9:30 Goneral Session

Recent developments in second-moment closure for buayancy-affected flows

T. J. Craft, N. Z. Ince, B E._Launder

Session A3 ERCOFTAC
TUr.BULENCE

9:30 Some similarity states of hormogeneous stably-
stratified turbulence - 42
J. R. Chasnov

845 A stug{ogf decaying stratified turbulence hy a two-
point closure EDQNM model and by direct numerical
simulations — 241
L. van Haren, C. Staquet, C. Cambon

10:00 S%néa current problems in stvatitied turbulent flows
C. W. van Atla

10:15 ggg.lslon in the presence of stable stratification -
J. R. Herring, Y. iimura

10:30 On gradient-transport turbulence models for siabl
stratgthed shear flow - 12 Y
C. Kranenburg

10:45-11:15 COFFEE BREAK

11:15 Exponn%ems on turbulence in stratified and rotating
oWs ~
P. F. Linden, B. M. Boubnov, S. 8. Dalziel

11:30 Measurements of a turbulent pateh in a rotating,
linearty stratified fiuid — 179
A. M. Folkard, P. A. Davies, K. J. 8. Femando

11:45 Direct numerical simutation of a viggmusly heated
lggﬂeynolds-number convective boundary layer —

G. N, Colsman, J. H. Ferziger

12:00 Decay of tusbulence in fiuid with densl:}(
fluctuations under the stabie stratification — 47
V. M. Emilignov, V. A. Frosi

1215 Statistical approach of the wave-vortex
interactions in stably stratified homogenevus
tumulence 246

F. 8. Godeferd, C. Cambon

1230 Inverse cascade in stably-stratified rotating

turbuience — 262
O. Nidtais, P. Bartello, E. Gariier, J. J. Rilay,
M. Lesieur

12:45 - 2:00 LUNCH

9:30

9:45

10:00

10:15

10:30

11:45

11:30

12:00

1215

12:30

Session B3
INTRUSIONS, EXCHANGE FLOW

Nonlinear effects in the unsteady, critical
withdrawal of a stratified fiuid - 23
S. R. Clarke, J. Imberger

Density intrusions with large relative thickness - 57
S. J. Wiight, D. Paez-Rivadeneira

Experimental and numerical investigation of laminar
multilaver injection and withdvawal i a stratified
snvironment - 177

M. Priven, G. A. Bemgorad, J. Atkinson

H. Rubin

Axisymmetric intrusion in a stratified fluid ~ 256
N. E. Kotsovinos

The influence of bottcm topography on intemat
seiches in continuously stratitied media - 107
M. Minrnich

Stabmty and mixing of a two-layer exchange ffow —
G Pawlak L. Ami

Constricted flows from the Facific to the Indian
Qcean - 137
D. Not

Exchangs flow thiough a channel with an
underwater sill - 157
Z. Zhu, G. A. Lawrence

Lsboratory experiments on two-iayer erchange
through long strans - 60

V. 8. Maasiich, A. 1. Kiilix, ¥. V. Olsksiuk

Hydrautic control analysis of an integrated gra
cuirent model — 134 s 0 Gravky
G. Alendal

One kind of instabiiity for a fiuid with heavy
particles — 194
G. . Burde

— o



Thursday - June 30 — Afternoon

2:00 - 3:30 General Session
Stabiy stratified flows in meteorology
J. C. R. Hunt, G. Shutts, S. Derlyshire
Direct and large eddy simulations of stratified homogeneous shear flows
U. Schumann
5:30 - 4:00 Posier Presentstion GP2
1 Stratitied flows in urban scale atrnosphare — 123 6. Stability criterion of a stratified two-layer shear
S. Anguetin, C. Gullbaud, J.-P. Chollst tlow with hyperbolic-tangent velocity profile - 168
8. Nishida, S. Yoshida
2. Transition to stable state and mixing of initially 7. Stability of voitices with nonstationary elliptical
unstabie continuously stratified flud - 216 streamlines in stratified tiuid - 227
Ya. D. Afanasyev E. Gledzer, V. Ponomarev
3. Laboratory measuraments of vortex evolution in a 8 Numerical study of thermally stratified flow and its
stratified shaar flow - 186 interaction with a conducting wall - 203
D. F. Delisi C. Péniguel
4. The motion of coherent structures -~ 238 9, Microstructure simulation of suspanded sediments
Y. G. Morel, X. J. Cartoil -224
P. D. Scariatos, M. H. Kamel
5. Muitifractal analysis of coherent structures in 10. Turbuient antrainment of solid particie
tropical stratifie g ~ 255 8l nsions in a two-layer fluld - 6
Y. Chigirinskaya, D. Schzrnzer, S. Lovejoy, A. X. E, W. Wang
Lazarev, A. Ordancvich
4:00. 4:20 COFFEE BREAK AND POSTER VIEWIMG
Sesslon A4 ERCOFTAC Session B4
INSTABILITY AND TURBULENCE JETS, PLUMES AND WAKES
4:30 Layer formation in stratified circular Couette flow ~ 4:30  Stabliity cf a laterally confined round plume — 155
226 W.-T. Les, J. H.-W. Leo
B. M. Boutinov, E. B. Gledzer, E. J. Hopfinger
4:45 Sggiiﬁed Taylor Couette flow: numerical simulation 4:45 Buoyang :urface dischiarges inte unsteady ambient
P. Onandi J. D. Nash, G. H. Jirka
5:00 ?{treamwlse vortices near a density interfsce — 71 6:00 %ngsesﬁgaﬁon of & bubble plume in & cross flow -
’ A. Malier, C. Hugi
5:16 Characteristics of tuibulence by a breaking gravity 6:16  Destratification of reservoir with ubble plume -~ 159
wavs below its critical lovel - 127 T. Asaeda, H. Ikeda, J. Imberger, V. T. Ca
A. Dombrack, T. Gerz
5:30 Simulated and experimental two-layar fiows past 5:30  Piume interactior; above an outfall diifuser — 61
isolatec two-dimensional obstacles - 259 M. J. Davidson, I. R. Wood
P. F. Cumunins, D. R. Topham, H. D. Pite
545 z':rnﬁ‘,“ afﬁ%rfyi?g desaying gid tuibulsics ina 545 ;Ea’gicie clouds in density stratitied envivonments —
C. A. Rshmann, J. R. Koseff D. Luketina, D. Wiikinson
6:00 Mathematical modeiing of wind-induced turbuient 6:00 Intemal wavas, vortices and tutbulence in a wake
flows in a stralified water body -- 55 past a bluff body in a confinuously stratified liquid -
O. F. Vasiliev, V. 1. Kvon, D. V. Kvon 25
Yu. D. Chashechkin
§:16  The horizontal and vertical structure of the vorticity 6:15  The structure and long-time evolution of blutt body
tield in fresly-decaying, stratified grid-turbulence — wakes In a siable stratification — 196
197 G. R Spadding, F. K. Bmwand, A. M. Fincham
A. M. Fincham, T. Maxworthy, G. R. Spedding
7:16-8:15 PRESENTAT!ION OF COMPUTER CODES AND ROUNDTABLE ERCOFTAC

DISCUSSIONS IN LEG!

—— ——————




Recent Developments in Second-Moment
Closure for Buoyancy-Affected Flows

by

T J Craft, N Z ince and B E Launder
UMIST, Manchester, England

Abstract

The paper summarizes a new type of second-mornent closure, more elaborate in form than
earlier versions but designed to satisfy the two-component limit to which turbulence
reduces at a wall or at a sharp density interface. Because they are intrinsically realizable,
closures of this type are believed to offer the prospects of a wider range of applicability
than earlier schemes. They may also be expected to display better numerical stability.
Several lilustrative applications are provided including the downward directed warm jet, the
stratified mixing layer and buoyancy aifected grid-turbulence decay. Extension of the
scheme to near wall flows appears possible without introducing empirical ‘wall-retlection’
terms, at least in fiows parallel to walls.

1 Introduction

Second-moment closure is widely regarded as being the most productive level at which to
treat problems of turbulent flow if one seeks a model of wide applicability (with acceptable
computaticnal costs). The principal reason is that the generation terms in the second-
moment equations appear in a form that requires no modeliing. Nowhaere is the truth of this
assertiocn more evident than in buoyancy-modified turbulence whers, with a few simple
approximations appiled to the unknown processes, predictions of complex phenomena can
be achieved with surprising accuracy, Launder (1989).

However this *basic® modeliing of second-moment closure (hereinafter referred to as the
basic model) is known to have limitations, perhaps especially in free shear flows where fiow
conditions depart far from local equillbrium. In racent years thave has, however, been a
great daal of effort directed at improving second-moment closu: s focusing in particular on
devising realizable models, Schumann (1977), Lumlgy (1978), atlis to say, models which,
by their construction, are unable to generate physically impossibie - as opposed to merely
incorrect - rasults. Prime among the various impossible results that are eliminated in a
realizable model are negative values of any normal stress.

While the principles of realizability and the associated tivo-component limit, Lumley (1978),
were known in the late 1970’s, it was a dacade before general modelling proposals were
put forward and, only now, is a reasonably fuli picture beginning to emerge of the
capabilities of these new approaches.

The focus of the present contribution Is 1o review one of these new-generation approaches
to closure and to give examples of some of the buoyant flow predictions that have been
compuied with it. In addition, we illustrate how important the treatment of triple moments
are in certain stably stratified turbulent flows.
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2 Modelling Praposals
2.1 The Exact Equations

The exact second-momient equations for the turbulent sresses and scalar fiuxes may be
written

Dug; Q)]

244 Py+Gy+dy + ¢y - g

DUP @
Dur = Pg + Gg + dg * ¢p -

The symbois P, Py and Gn denote the generation terms due to shear, scalar gradient
and buoyancy Whlclh are given in detail in Tables 1 and 2. Since each comprises second-
moment and mean-field quantities, they may all be regarded as known or determinable
quantities. The buoyant contribution to the turbulent scalar flux contains 6%, the mean
square scaiar variance, and this, in turn, is determined from a cdosed form of its own
transport equation

D&?
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Again P, = -26u; 38/0x; can be regarded as known.

The Reynolds stress and scalar fiux equations each contain three processes for which
models must be devised: the non-dispersive pressure interactions, ¢, and ¢, the diffusion
terms, d, and d,,; and the dissipative terms g and g, For the last group it is convenient,
foliowing Lumley (1978), to assume local isotropy (e = 0; ¢, = 2/3 b, where ¢ is the
viscous dissipation rate of turbulent kinetic energy, k) absoénlng ehortoomlngs of this
assumption intc the modelling of ¢, and ¢,. The diffusion tenns can, as discussed later,
be of vital importance when stable stratification leads to a general decay of turbulence. In
many engineering and environmental flows, however, their influence is fairly weak and a
gradient diffusion approximation is then bath mathematically convenient and physically
adequate. The authors’ group commonly adopts the Daly-Harlow {1970) proposal:

3 k— OUY;
dy = o |CymUplly mmmt
¥ axk[ e ]
. 30 4
dp = 2 r.:':e.!fu 2
3y | e K o
o | . k——02F
dy = —— |Cg—U -
o axk cee ku‘-a—x‘]

while still simpler schemes, employing an isotropic diffusion coefficient are used by many
groups. Others adopt the so-called algebraic second-moment, ASM closures ameng whom
Rodi (1982) has made extensive explorations of buoyancy driven flows. These ecornomical
approaches all work adequately when diffusion is of litie importance in the overall second-
moment budget.

——-—— .
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Generation Terms (exact):

8U; 6U
P;=- {ﬂ;“kg—‘ + muka } Gijs - {ﬂ.u,o + ﬂ,u,o}

Pressure-Strain Model:
¢ij = dij1 + diz2 + Pija
where
$ijn = =—c1€(ai; + ¢ (airaje — Y3426i5))
¢dizz = ~0.6(P;— 1/35‘3'1"-),) + 0.3¢a;; (Pri/€)

[ wew; wi, <3Uk 8U1) u;uk( avu; 3U,)]
~02 = \Tn T o)~ TF W, TR,

~ ca{A2 (P., - Dij) + 3amian; (Pmn — Dmn)]
7
+ ¢ {( T 42) (Pi; = Yabi3 Pus:)
+ 0.1€ [ai; = Y (aixar; — YabijA2)] (Pek/€) — 0.05a;;au Pa;

+ 0.1 [(&Euﬂpmj + EJ%‘&P"“-) - 2/36:_1 Lifm Pml]

k
[Gra; Ug; Ul Crlm auy
4-0.1 l' 'k2 ¢ A 1/36,']' mkz ] [6D ¢+ 13k ( <+ FrY )]
+0. 2“‘”'&“’- (Du - Pu:)}
34 , 1
bija = ~ (10 2) (Gij — V36ijGra) + —Giijk
3 U U U B B —
+ = 30 (ﬂs 7 +ﬁ]__n;c_:) Ut — 10 lJﬁk ";c Umb
- 26k (""“"ﬂ L ) WA
_ _]: 'u,,,u 'Uvmun 1 umuk 1 "T"l Umuj , Gkdj Gm o 5
3

(ﬂiumuj +ﬁjumu;) Tnln g ¢ ,B;,u'"uku°ulum9

k k k

Table 1 : Exact generation terms and pressure-strain model lnTJFI; equations
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22  Modelling Nan-Dispersive Pressure interactions.

The pressure terms are traditionally decomposed into turbulence-turbulence interactions
(11 ¢51): mean strain contributions (¢ 5, ¢,) @and buoyant effects (§5, ¢ g5). The basic
model, alluded to in the Introduction, adopts Rotta’s (1851) linear return-lo-isctropy model
for o "

O = -cyedy

where &, is the stress anisotropy tensor (U, - 1/3 6,/1?,()11(. Recent closures, however,
mainly adopt non-linear re, ‘esentations in - ‘\tch the coefficients are functiens of ohe or
both of the independent stress invariants, Lumley {1978). The form adopted in the present
computations, Cresswell et al (1989), Craft and Launder (1989) is given in Table 1. Its
form was arrived at by reference to nor-buoyant flows and in particular satisfies the two-
component limit wherein ¢__, and ¢ o, vanish if L_E = Q. This is achieved by way of the
latness parameter” A =1 - 9/ (A; - Aj} where A, = 2, &; A3 = &y a; 8, are the second
and third invariants of the anisotropy stress tansor. The quantity A has the important
proparty that it always vanishes in two-component turbulence (Lumley, 1978). The specific
forms adopted for ¢, end ¢ are:

& = BT5AZ+ 1A ; o = OF

The formulation for ¢4, given in Table 2, is analogous in form. Note the inclusion of the
scalar.dynamic tme-scale ratio, 7 = celduzgfe and the final term in ¢, that involves the
maan scalar gradient, 98/ax;, a practice first introduced by Jones & Musonge (1983) to
handle tlows where the normalized generation rates of k and 6< were greatly different.
Although largely smpirical, ¢ p and $ 4 have both been fixed by reference to non-bucyant
flows.

Mean strain influences on ¢ i and ¢ are arrived at by first making the usual assumption
(Rotta, 1951) that

H mj BU.
¢1 = am + 8 | —
e = 0] ‘Jaxm (5)
m a!
¢'»02 (l'éx—m

The tensor a’;”- is then expressed in ascending powers of the stress-anisotropy tensor. The
first approach of this typs was made by Launder et al (1972) who retained only terms iinear
in &, More recent attempts have retained non-linear formulations and the additional frea
coefficients that result are determined, mainly, by requiring that the pressure-strain process
should fall to zero if 4, (say) should vanish, i.e.:

m2

5.2 = 0 if 822=-2I3

fFor the corresponding term in the heat-flux equation, the recommendad route (Craft &
Launder, 1889) is to require:

ou ou.
axm bnz = T ax2
4 ]

in the two-component limit. This leads, with other constraints associated with
homogeneous turbulence, to the representation shown in Table 2.




Geaeration Terms (exact):

30 WAL —
Fig = (ﬁ-“; 9%; + 2y gz) Gig = —3;62

Pressure-Scalar Gradient Model:

dio = Gio1 + Pieg + i3

where
g = -1.7[1+12(424)"7] RI/’{- [0 (1 + 0.64;) — 0.8akuz0
+ L1aikak;5;0] - 0.24'2Rkay; ge
J
digz = 0. Su;ﬂg—g- - 0. 214#9%—(!£ + ]/5-;;.“—.‘6(?]‘];/6)
—  (OU , Gy )
- 0.4y 0ay ( + = N
al, o )
+ 0.1%5 kG ( O
- 0~1m(aimpmk =+ 2amkPim) /k
eU, Ay —_ —_
+ 0.15amy (a 2 + — B2x ) (a,,.ku.-ﬂ - am.'ukﬂ)

— U —.0U; —_— aU; 3U,-)]
0.056,,; [7amk (u.O o + uf s t) - u,8 (amza—; + @k o

diez = YaBi0? — Buflay

Table 2: Exact generation terms and pressure-scalar flux model in-Jﬁ equations
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In fact, the model for dpls mtlm:danngiy bulky and, in all the free-flow examples quoted,
it has been simplified by setting 02 to zero (with ¢, = 0. 6) However, very recently (Launder
& Li, 1994) it has been discovered that retention of 02 (set equal to 0.6 with ¢, reduced to
0.55) enables both free flows and flows near walls to be predicted satisfactorily without the
nead for the "wall reflection” terms that are habitually employed in computing near-wall
flows. It is unlikely that this change would have had any significant effect in the prediction
of the free flow examples quoted hereunder which employed the original values for the two
empirical ceefficients.

The buoyant terms in the pressure containing comrelations are obtained in precisely the
same way &s the mean-strain effects. The resultart formulations, obtained by Craft (1991)
as a fragment of his PhD study and first employed by Cresswell et al (1989), appear in
Tables 1 and 2. Note that the buoyant contribution to ¢ is very long but, as with the much
shorter term in ¢4, it contains no empirically tunable coefficients. These models of the
‘rapid’ parts of the non-dispersive pressure fluctuations are far more complex than the
usually adopted basic-model formulations:

¢l]2+¢ll3 = -OG[PI'["'GIJ—%an(Pkk* Gkk)]

— 08
Gp2 * dgz = - 05 [" gy — + Gia}
i
The comparisons will attempt to show that the greater complexity brings a considerably
greater width of applicabiiity.
23  Determining the Dissipation Rates

The kinetic energy dissipation rate, ¢, remains as an unknown and is found from an
equation identical in overali form to that of the Basic Model:

D . 8
Dt an

The difference from earlier forms, however, is that the coeficient ¢, is taken as a function
ot the stress invariants and ¢, takes a lower value than formerly:

1.92
2
1 + 0744

— g €
cs":':‘uk“l + V%]‘—g%} + Tﬂ (P + Gl -E - c&%

6y = 1.0 Cp =

where Ay = max (A, 0.25)

The abaove change to ¢, goes a significant way to reducing the planefround jet anomaly
and, moreover, to making predictions of weak turbulent shear flows far more sensitive to
initial conditions than hitherto - in line with experiment. The enforced reduction of ¢4 to
unity to accommodate that made to ¢, brings the substantial side benefit of enabling the
effect of bucyant damping on the dissipation rate to be approximately ancommodated.
Exampies will be provided later.

The scalar dissipation rate may also be obtained via a transport equation (see, for
example, Craft & Launder, 1989} and, in the long term, that is what we would expect to see
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employed. However, given the exploratory form of such model equatione, in computing
buoyant flows, cur present experience is that one can do better by obtaining ¢, via ¢ by
means of the aigebraic connection

_Raze
" 3%

where the time-scale ratio R is related to the heat-flux correlation coefficiert by

R= 20+ i Ax = BTGP @

3 Some Applications of the Made| to Buovani Flows

The model presented in §2 was iirst applied by Craft (1991) to consider homogenenus,
horizontal, stably stratified flow that had been created by passing a uniform flow past a
screen of differentially heated horizental rods, Webster (1964), Youngy (1975). The
computations shown in Fig 1 have assumed 1ocal equiiibrium (i.e. 1/2 (P, + G} = ) which
is what has traditionally been adoptad for this test caca (though it may have been some
way from the truth). Evidently, as the gradient Richardson number, R, increases, the
shear-stress correlation coefficient decays, the turbulent Prandtl number increc.ses and the
horizontal heat-ilux coirelation decreases moderately. The non-iinear model reproduces
these measured responses at least as accurately as the Basic Model! even though the
two empirizal coefficients in the buoyant terms of the latter madel were optimized by
reference tu these data. The non-linear scheme, in contrast, has no adjustable coefficients
in the buoyant pressure-strain modei.

We turn now to inhomogeneous cases of self-preserving free shear flows: the plarie and
axisymmetric vertical, byoyantly-driven plumes. Their spreading behaviour, obtained by
Cresswell et al (1989), is summarized in Table 2; for comparison the behaviour of the plane
and axisymmetric jets in stagnant surroundings s also given. Comparisons ars drawn both
with experiments and with predictions obtained with the Basic Meodsel. What is evident is
that a far better overall agraement is achieved with the new invariant-dependent closure
than with the Basic Mode!. Even where discrepancies remain with experimental data, as
in the case of axisymmetric flows, these are both smaller in magnitude than with the Basic
Model and show a consistent behaviour across both the plumes and the jets.

Table 3 Rate of growth of half-width for some self-preserving free
shear ficws
Flow Basic Model Recommended New Model
experimental
vaiues
Plane plume 0.078 0.120 0.118
Round piume 0.088 0.112 0.122
Plane jei 0.100 0.110 0.110
Round jet 0.105 0.093 0.101

' An extensive review of the capabilitios of the Basic Modet in buoyant fiow has been riven by Launder
(1989).
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Lines: predictions, Craft (1991):
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The same workers extended their study to the case of a hot jet discharged vertically
downwards Into a cold water environmont moving upwards at less than 2% of the jet
veiocity. The penetration leng™h, of course, is ciudially dependent on mixing. Figure 2a
is a vecior vslocity plot in the vicinity of discharge showing the reversal in the jet divection
while Fig 2b and 2c present raspectively the shear stress and resultant niear: veiocity
profiles. Evidently, the new model doas significantly better in capturing the effests of
buoyancy and shear in this guite complex recirculating flow. Crevswell et al (1989) were,
moreover, agreecably surprised to report that, bacause the new model respected
reaiizability, it led to a faster rate of numericai convergence and to a reduction of some
30% in compuing time per run reiative to the Basic Mod<!, despite the algebraic complexity
of the model tself,

A miore recent application of the modei, which focuses especially on the buoyant terms has
been rencrted by Van Haren {1992). Tha mode! is believed tc be the same as that
presented in §2 save that ¢, and ¢,, took the constani values 1.44 and 1.76 and a
transport equation was solved for ;. Van Haren congidered the decay, in the atsence of
mean strain, of staly stratified turbulence and, in particular, the oscillatory pattern that is
known to ba establishad during the decay due to reversals in sign of the vertical haat flux.
Van Haren gererated 2-point EDQNM resuits of such a flow and then tested how weil
various singie-point clesures did in reproducing the behaviour. Figure 3 compares the time
history of the normalizad vertical heat flux wo/( )2 verstis normalized tirne where N is
the Srint-Véisdid frequency. Quite clearly, the "extended" k-e mode! and a simple sacond-
moment closure® shown in the laft-hand figure exhibit a significantly too long pericd and
a too rapid decay of the heat flux compared with the EDQNM data. In contrast the new
formuladon shown in Fig 3b is rather successtul at mimicking the EDQNM results.

Itis porbaps worth remarking that the present authers, in a short unpublished internal study
(Craft & Launder, 1990) had earlier looked at the same probiem (in this case, the focus
wasc measurements by ltswaire et al, 1986) and repioduced the osclliatory behaviou of the
scalar flux but not the correct osciliatory period nor the amplitud= decay rate. Van Haren’s
results may indicate that ve should simply have persevered longer or perhaps that the
difierent trectment of the dissipation rates in ihe two studles may have been responsible
for the difference. What shouid not be overlooked in considering the reason for
differences, however, Iis that, unequivocally, second-moment closure can reproduce an
cediliatory behaviour in the scalar flux which, probably, most workers wotild have said was
a signal of the collapse of turbulence into wave-like oscillations - and thus outside the
scope of conventionel turbulence modelling.

A further application of the mode io a free shear flow is the stably-stratified saline mixing
layer of Uitenbogaard (1988). Tnis is a test case that ciearly brings out the superiority of
second-moment over eddy viscosity medelling. Fig 4 compares the authors’ predictions
with the présent ciosurs with innse of the siandard ke modei. Evidently, because eddy
viscosity schamas are insufficiently sensitive to buoyant damping, mixing proceeds at far
too great a rate sa that, by the final station, a nearly unifosm salinity level is predicted. The
secend-momen: predictiors are far better: both those with the proposed closure and those
generated oy the Basic Mcdel that are omitted for clarity. However, it appsars that, even
at second-mcment level, rather tco rapid mixing is taking placuy, «s evidenced by the

2 No details ware provided of this scheme but it was presumably the *basic’ or the (in this case) vary similar
‘quasi-isotropic’ mode] frequently used by the group at the ECL
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predicted mean salinity profile being rather tco broad at the downstream station®, it was
suspected that the problem arose from modelling diffusive transport: in these strongly
stratified flows one may expect buoyant infiuences on the transport processes to be
significant (see, for exampie, the work of Zeman & Lumiey, 1979, on the stably stratified
atmospherig boundary layer). No such effects are incorporated in the GGDH. in fact, the
difiusion of 62 turns out to be the most crucial process for 6 appears in the budget of the
vertical salinity flux, w8, which, in tumn, enters the buoyant term in the equation.
Accordingly, for illustration, we have just aimed at improving the n'\_%del of up®. For this
purpose we have essentially applied the same approximations to u9* as are made in the
Basic Model of the second moments. In addition, convective transport is discarded while
the fourth-rank products are expressed in ierms of the second by the Miillionshichikov
(1941) hypothesis. The resultant mode! equation is

8)
g ~cé§“v,u— j?p' m:] aff m“?}

xk

where the coeffivient ¢; takes the value 0.11.

Key aspects of the coraputations with this more co _g!ete madel for up2 appear In Fig 5.
A somewhat smaller and less dispersed level of 6 is predicted and this leads to a
substantially modified profile of W8 and to the somewhat steeper mean profile of salinity
concentration which accords better with tha measured data. This resuit suggests that a
more genera! and comprehensive treatment of second-moment transport processes in
highly stratified flow may be wamranted, since the additional computational cost Is not
significant.

Attention is now turned to near-wail flows. Applications to date have been especially
concerned with mimicking the varying effects of shear and viscosity as the wall is
approached. It has been found, Launder & Li (1994), that when both ¢, and c2 in the
model of ¢, are retained and appropriate low-Reynolds-number forms are introduced to
the dissipation rate equations, it is possible to predict complex shear flows up to the wali
itself without introducing wall-damping effects. Figure 6 shows, for example, predictions
of flow in a square suctioned duct. The wall-known bulging of the contours towards the
comers is due to the secondary flow which in tum, arises from the source of streamwise
vorticity associated with gradients of the Reynolds stresses lying in the cross-sectional
plane of the duct. The level of agraement achieved with the closure Is far better than that
with the Basic Model, despite the fact that that scheme employs wall-proximity corrections
o ¢ ¢

To date no applications of precisely the above model have been reported for force-field

affected flows. Howsver, in an intermediate exploration, Launder and Tselepidakis (1084)

have applied an earliar versicn of the madal to flow in a two-dimenslonal channel rotating
ln orthogonal mode. The modelling detalls are not reproduced here but, briefly, because
cz was taken as zero (with &, = 0.6), it was necessary to incorporate a wall-reflection
correction, albeit one much weaker than for the Basic Model. The Coriolis force that acts
on the Reynolds stress field in this case creatas a fiow similar to, if not identical with, that
of & horizontal, gravitationally modified heated channesl flow: on the suction side of the duct

3 The fact that the predictad profilss ke above the imeasurements is believed to ba dus Yo weak thwee

dimansionality in the expetriment. Comparisona batween moasurement and pradictions should thus ignore this
displacernent.
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turbulent transport is damped by the rotation while on the pressure side it is augmented,
at least for the moderate rotation rates considered here. Comparisons are drawn in Fig 7
between the second-moment computations and the direct numeiical simulations of
Kristoffersen and Andersson (1990). Also indluded are predictions obtained by
Kristotfersen et al (1990) using the earlier model of Launder arid Shima (1989}, essentially
a low-Reynolds-number version of the Basic Model. We see that both modeis capture
quite well the strong asymmetry of the Reynoids stressas that arises from the rotation and
the assoclated strongly asymmetric mean valocity fiaid, Overall, however, the new scheme
achieves decidedly the micre complete agreemant with the direct numerical simulation. in
contrast, any eddy viscgsity model would show no effect of rotation for this flow since the
extra generation in mecﬁ cemponent, normal to the wgll, is exactly balanced by an equal
and opposite source in the streaniwise normal stress (U5) and consequently there is no net
augmantation of the generation rate of turbulence energy.

Finally, itis of interest to note that a group from the LNH of the EDF Research Laboratories
in Paris has begun to apply the naew approach to tockle some of the physically very
complex problems of sediment transport, which are, of course, Intrinsically affected by
buoyant modifications to turbulent mixing (Laurence et i, 1983). While the results are only
preliminary in character they predict alterations in the viscous layer thickness due to the
sediment loading which seem to be broadly in line with experiments.

4 Concluding Remarks

The paper has repoited resuits obtalned with a new form of second-moment closure
designed to satisty the two-component limit. Turbulerce approaches this limit at a wall and
in other circumstances where turbulent fluctuations in one direction are strongly damped.,
This stratagy is naturally appealing for the prediction of buoyancy-affectad flows because
there a stebilizing gravitational field can, indead, produce a quasi two-component
fluctuating velocity field.

At present the model requires more exiensive testing and, doubtiess, refinement. There
seems little doubt, however, that the main elements of the modelling set out in this paper,
including proposels for modelling second-moment transport, give closure schemes that
achieve a significantiy wider range of applicability than thosa founded on the Basic Model.

Nomenclature

ay dimensionless anisotropic stress, (tT,u',' - 143 6,, Gﬁk)/k

a’}?} fourth rank tensor in mean-strain part of pressure-strain model
A Lumley's flatness parameter

Ay, Ay invariants of Reynolds stress

Azy  heat fiux invariant

bfg;  third rank tensor in mean-strain part of pressure-scalar gradient model
cs coefficients in turbulence models

d diffusive transport (subscript denotes diffused quantity)

D diameter or distance between parallel planes

g gravitational acceleration

Gy,  buoyant generatiun rate of E',T/}




G,  buoyant generation rate of U

Gy  buoyant generation rate of up

k turbulent kinetic energy, L-E/Z

P;  shear-generation rate of gy

£,  generation rate of uf by mean gradients of U;and ©
Py,  generation rate of 6

R, gradient Richardson number

4V, fluctuating and mean veiocity in direction x
u, kinematic Reynolds stress

u8  kinematic scalar flux

u, U, fluctuating and mean velocity in direction x,
w vertical velocity tluctuations

X position coordinate

z vertical coordinate

¢;  pressure-strain term of uy;

dn pressure-scalar gradient tarm of ug

gy dissipation rate of E,t-:;

ey  dissipation rate of up

g  dissipation rate 12 62

e r.m.s. scalar fiuctuations

2] mean scaiar

B, buoyancy parameter in direction X;
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Some similarity states of homogeneous
stably-stratified turbulence

By J. R. Chasnov

The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

The decay of statistically homogeneous velocity and density fluctuations in a stably-
stratified fluid is considered. Over decay times long compared to the turbulence timescale
but short compared to the period of internal gravity waves, three distinct high Reynolds
number similarity states may develop. These similarity states are a consequence of the
invariance of the low wavenumber coefficients of the three-dimensional kinetic or potential
energy spectrum; and their preferential development depends on the relative magnitudes
of the initial kinetic and potential energy per unit inass of the fluid. When the turbulence
has decayed over a time comparable to the period of the gravity waves, the three similarity
states mentioned above ure disrupted. Evidence will be presented of a new similarity state
which then develops asymptotically.

1. Introduction

The statistics of homogeneous turbulence in fluids of infinite extent typically depend
on time throughout their entire evolution. In homogeneous turbulence at high Reynolds
numbers, similarity states of the flow field may replace the statistically stationary states
that typically occur in bounded flows. In these similarity states the turbulence spectrum
decays without change of shape so that in an appropriately scaled coordinate system
the spectrum is independent of time. Some of the homogeneous flow fields for which
similarity states have been observed by large-eddy simulation include decaying isotropic
turbulence, passive scalars transported by isotropic turbulence with or without a uniform
mean gradient, and buoyancy-generated turbulence. The existence of a similarity state for
decaying homogeneous isotropic turbulence was postulated early on (Kolmogorov, 1941) as
was that for a transported homogeneous isotropic passive scalar field (Corrsin, 1951). More
recent work (Batchelor, Canuto & Chasnov, 1992; Chasnov, 1994) indicates that hitherto
unsuspected similarity states of homogeneous turbulence may exist for non-isotropic flows
which contain more complicating physics, such as flows with buoyancy forces and uniform
passive scalar gradients.

It is a natural extension of our earlier work in buoyancy-generated turbulence and tur-
bulence with uniform passive scalar gradients to consider whether high Reynolds number
similarity states exist for homogeneous turbulence in a stably-stratified fluid with Loth
buoyancy effects and active scalar (Jdensity) gradients. In this paper, we first show how
sorae of the flows previously considered can occur in a stably-stratificd fluid at large Froude
numbers. We will also present some analytical arguments and numerical results which pro-
vide evidence for a new similarity state which develops at small Froude numbers.

-




2 J. R. Chasnov

2. The governing equations

Choosing our co-ordinate system such that the z-axis is pointed vertically upwards, we
assume a stable density distribution p = pg — 8z + p’, where pg is a constant, uniform
reference density, 8 > 0 is a constant, uniform density gradient along z, and p’ is the
density deviation from the horizontal average. The kinemacic viscosity v and mwolecular
diffusivity D of the fluid are assumed constant and vniform. After application of the well-
known Boussinesq approximation, the governing equations for the fluid velocity u with
zero mean and the density fluctuation p’ are

V-us=0, {2.1)
M y-ve= 28 YPtagd) o, (2.2)
ot Po po
ap' ’ 2 ¢
E‘-{"U-Vp = fBus + DV*p/, (2.3)
where g = —~jg with g > 0, j is the vertical (upwards) unit vector, and p is the fluid

pressure.

Our earlier work considered various limiting forms of (2.1)-(2.3) for which one of g or
was taken equal to zero. By a suitable non-dimensionalization of Egs. (2.1) - (2.3), we will
show that under certain conditions the terms containing g and 4 may also be negligible in
a stably-stratified fluid. It is convenient to define a normalized density fluctuation € such
that it has units of velocity, 6 = \/g/pe0p’". Use of 8 instead of p’ in (2.2) - (2.3) modifies
the terms proportional to g and 3 into terms proportional to N, where N = \/_(_75_/;5 is the
Brunt- Viisald frequency associated with the internal waves of the stably stratified flow.
The mean-square statistics 3(u®) and }(6%) are the kinetic and potential energy of the
fluid per unit inass, respectively. The equatxons of motion conserve the total energy per
unit mass in the absence of viscous and diffusive dissipation.

Now, defining dimensionless variables as

T=t2 x=2%2 u=2X p__(i’_"'_p.‘lz,’fl, 5.9 (2.4)
lo lo up Pouo

where lg, up and 6y are as yet unspecified length, velocity, and normalized density scales,
the equations of motion (2.1)-(2.3) become

V-U=0, (2.5)
ou 1 & 2
— = — — 2
0T+U VU = JF —0Q - VP+RVU (2.6)
(r}u 1 Up
U-VO = —— — .
@T+ 0= T 9003 UROV Q, (2.7)
where i
_ Yo = ?‘_9._‘1 =X
Fy = N’ Ry o = Pk (2.8)

The dimensionless groups Fy and Ry can be regarded as initial Froude and Reynolds
numbers of the flow, respectively, although their precise definition is yet dependent on our
specification of Iy, uo, and 6p; o is the Schmidt (or Prandtl) nurmber of the fluid.
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3. Three large Froude number flows

We show here that particular initial fluctuating velocity and density fields in a stably-
stratified fluid can result in the establishment of distinctly different flows when the initial
Froude number of the turbulence is large. The important point here is that with well-
chosen initial flow fields either or both of the source/sink terms, (those terms proportional
to the inverse Froude number in {2.6) and (2.7)), may be negligible over long times.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

We consider an initial generation of isotropic velocity and deasity fields of comparable
integral scales and kinetic and potential energies. We identify the unspecified length scale
lo with the initial integral scale of the flow, and ug and 6o with the initial root-mean-square
values of the velocity and normalized density fluctuations, respectively. If Fy > 1, both
of the terms multiplied by 1/Fp in (2.6) and (2.7) are small inivially. Over times in which
these terms remain small, the velocity fluctuations decouple from the density field and the
turbulence decays isotropically while transporting an isotropic passive scelar field.

Flow 2: Isotropic turbulence in a passive scalar gradient

Here, we envision the generation of an initial isotropic velocity fleld with given kinetic
energy and integral length scale, and no initial density fluctuations. We identify I and us
as in flow 1. However, the initial conditions intreduce no intrinsic densi'y scale. So that ©
attains a value close to unity, we set the dimensionless group multiplying Us in (2.7) equal
to one, yielding 6o = Nlg. The dimensionless group multipiying © in (2.6) then becomes
1/F2, so that if Fy > 1, this term is small initially. As long as it remains small, the
generated density fluctuations are passive znd the resulting equations govern the evolution
of decaying isotropic turbulenice in the preser-e of a mean passive scalar gradient.

Flow §: Buoyancy-generated turbulence

The fluid is assumed to be initially at rest with some given random density distribution.
We identify lo and 6y with the initial integral scale and rcot-mean-square value of the 6-
field, respectively. So that U attains a value of order unity, we set the dimensionless group
multiplying © in equation (2.6) equal to one, yielding uq = /Nlgfo. The dimensicnless
group multiplying Us in (2.7) is now equal to 1/F¢, so that if Fy 3> 1 this term is small at
the initial instant. Over times for which this term remains small, the resulting equations
govern the evolution of buoyancy-generated turbulence.

How long do the above flows evolve before the effects of the neglected terms become
important? Consider the evolution equations (2.6 and (2.7) after the flow fields have
evolved over a time £. The relevant length, velocity, and normalized density scale of the
flow are now those which characterize the fields at time ¢. The source/siuk terms are of the
same order when the velocity and normalized density scales are of comparable magnitude.
This condition is satisfied by flow 1 from the initial instant. However, the density scale ¢’
and velocity scale u’ at time ¢ in flows 2 and 3, respectively, increase from initial values
of zero and can be estimated as ¢ o« Nu't in flow 2, and v’ « N¢'t in flow 3. Hence, the
density and velocity scales become comparable when t > 1/N. Also, the Froude number
of the flow at time ¢ can be shown to be proportional to 1/Nt, so that it also becomes
small when ¢ > 1/N.
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We have thus arriv=d at the intuitive result that physical effects associated with inter-
nal gravity waves affect the flow dynamics only after an evolution time comparable to
the period of the gravity waves. For flows of initially large Froude number, the velocity
ard densizy fields evalve over many turbulence time scales before internal waves become
dynamically important. Ilen:e, similarity states associated with each of the above flow
regimes may be established before a significant aecrease in the flow Froude number. In
the nex: Section, we briefly review the salient features of these similarity ctates.

4. Asymptotic simiiarity states at larg> “roude numbers

The similarity states which develop in tl.e above flows depend on the form of the kinetic
and poveutial energy spectra at low wavenumbers. Defining the kinetic energy spectrum
Ex(k,t) and the potential energy spectrum E,(k,%) to be the spherically-integrated three
dimensional Fourier transform of J{ui{x,v)u;(x +r,t)) and 1(6(x,?)8(x + r,t)), respec-
tively, we write an asymptotic expansion of the spectra reu. & =0 as

Fp(k,t) = 2mk¥(Bo 4 Bak? +...),  E,(k,t) = 27k%(Co+ Cak? + ...), (4.1)

where By, B, ..., aud Cg,C2,... are the lowest-order coefficients of the ¢xpansion. For
brevity, we consider here only flow Selds for which By and Cy are non-zerc unless the entire
spectrum is zero. The invariance of one or both of these low wavenumber coefficients lead
directly to tiie establishment of different similerity states.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

The low wavenumber coefficients By and Co are separately invariant (Saffman, 1967a;

Corrsin, 1951), and when they are non-zero the high-Reynolds nutaber asymptotic results

for the kinetic energy, scalar-variance and integral scale may te determined by dimensinnal
analysis to be (Saffman, 1967b; Larcheveque, et al., 1980)

a 2 e 2 i .8 L2
(u") x B3t~ s, (6°) x CoB, ®¢ ™8, [~ Bgts, (4.2)
The nature of this similarity state is such that the kinetic and potential energy spectra

decay without <hauge of shape so that stationary spectra may be defin.ed by the appropriate
scaling of the wavenumber and spectral amplitudes.

Flow £: Isotropic turbulence in a passive scalar gradient

The passive density (scalar) fluctuations for this fiow are generated by velocity fluctua-
tions along the direction of the mean gradient; consequently, tae low wavenumber coeffi-
cient of the potential energy spectrum is no longer invariant in time. Rather, Co depends
directly on the invariant 55, N and t by

1
Co(t) = §N230t2. (43)
Use of (4.3) in (4.2) yields the asymptotic growth of the scalar variance (Chasnov, 1994)

(6%) « N2B} 13, (4.4)
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Flow 8 Buoyancy-gencrated turbulence

Here, the velocity fluctuations are gererated by density fluctuations end By is no longer
invariant; however Cp is invariant. The cozfficient By is related to Cp, N and ¢ by

9
Bo(t) = -§N200t2; (4.5)
and substituting (4.5) into (4.2) - 3 (Batchelur, € al., 1992)
(W) o (N2Co)8t7%, (%) o Co(N2Co) "3t %, o (N2Co)5tE.  (4.6)

An interesting and unusual feature of the similarity staie for bucyancy-generated turbu-
lence is an increase in the flow Reyuolds number asymptotically.

5. The fow at small Froude numhers

After the stratified flow evolves over a time ¢t ~ 1/IV, the Froude number is of order
unity so that the above large Froude number similarity svates are no longer valid. As
the flow evolves further so that Nt 3> 1, the Froude number may be expec’  to become
small, and it is of some interest to consider whether a different similarity . ate of the
flow field is established asymptotically provided the Tleynolds number of the flow remains
large. To construct a similarity state, an invariant of the kinetic and potential energy
spectra near k£ = 0 must be determined. Such an invariant does indeed exist and is
associated with the low wavenumber coefficient of the total energy spectrum E(k), defined
by E(k) = Ex(k) + Ep(k). An expansion of the total energy spectrum near k& = 0 yields

E(k,t) = 27k (A + A2k +...), (5.1)

where 4g = By 4 Co and Ay = By + (3 are the sum of the low-wavenumber kinetic and
potential energy spectral coefficients. The coefficierit Ag can be shown to be an exact
invariant of the flow. Here, we consider its value to be non-zero at the initial instant.

We thus have a new invariant Ap upon which to base au asymptotic similarity state.
However, a straightforward dimensional analysis is now complicated by the addition of
another relevant dimensionless group, namely N¢, which is directly proportional to the
number of wave periods over which the flow has evelved. For asymptotically large Froude
number dows, Nt is vanishingly small and does not enter into the scalings; however, this
may not be the case at small Froude numbers when Nt is large.

Despite the above difficulty, we nevertheless attempt a dimensional analysis of this prob-
lem by considering the evolution of the total energy of the flow, e = ({u?) 4. (62))/2, for
which there exists an associateq invariant Ag. Dimensional analysis then yields

e = coASt=E (V)7 (5.2)
where we write the proportionality constant ¢, explicitely, and z is an unlnown exponent,.

In addition to the total energy decay, it is of interesi to consider the evolution of the
integral scales of the flow field associated with the total energy. The integral scales may
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6 J. R. Chasnov

evolve differently depending on whether they are measured parallel or perpendicular to
the vertical axis. Defining the horizontal integral scale of the total energy to be i, and
that of the vertical integral scale to be [, dimensional analysis yields

=, AN (NG, L= AR (), (5.3)

where ¢, and ¢, are proportionality constants, and y sud z are two additional exponents.

A heuristic argument can be given to determine the unknown exponent z. Afi small
Froude numbers, two disparate timescales of the flow exist: & fast time-scale of the wave
field and a slow tiine scale of the (urbulence. If we assume that the correlation time of the
nonlinear traasfer is directly proportional to the fast time scale 1/N, then dimensioually

= —Ag S (u?)3, (5.4)

which may be integrated directly to yield the value « = 3/5 in (5.2).

We do not yet have have any a priort argument to determine the remaining unknown
exponents y and z. Rather, in the next Section we present the results of large-eddy
simulations in which all three exponents may be computed.

6. Large-eddy simulations at small Froude numbers

To obtain a high Reynolds number flow at small Froude numbers, we perform large-eddy
simulations of Egs. (2.1) - (2.3) using a pseudo-spectral code for homogeneous turbulence
(Rogallo, 1981). For the subgrid scale model, we employ a spectral eddy-viscosity and eddy-
diffusivity similar to that of Chollet and Lesieur (1981). We take the initial kinetic energy
spectrum of the form given by Chasnov (1994) with the low wavenumber portion of the
spectrum proportional to k%, The initial potential energy spectrum is taken to be zero. Ia
the large Froude number regime, this corresponds to flow 2 above: isotropic turbulencein a
passive scalar gradient Preliminary calculations showed that the horizontal integral scales
grew more rapidiy than the vertical scales, in agreement with previous direct numerical
simulation resolts - Riley, et al., 1981), and that it was optimal to use a computational box
"vhich was eight times longer in the horizontal directions than in the vertical. Accordingly,
we took a compatational box length of 47 in the two horizontal directions and #/2 in
the vertical direction, with a corresponding grid resolution of 512 x 512 x 64 so that the
grid remaincd cubic at the sinallest resolved scales. With a periodic box, the horizontal
wavenual.ers then took the values kg, ky = 1/2,1,...,128 and the vertical wavenumbers
ky=4,8,...,128. The peak of the initial isotropic kinetic energy spectrum k, was pleced
at a wavenimber of U4. Two comyutations were performed with initial Froude number
Fy = ug/Nig given by Fy = 16.5 and 93.2. In the detinition of Fy, g is taken as the initial
root-mean square velocity Huctuation, and ly = \/7/k,. The computations were perforined
holding 4o and lp fixeu and varying N by a factor =f approximately 5.65. The results of
the computation are used here to tesc the posiulated scalings given in §5 and to compute
values of the unknown exponents z, y, and z.

In Figure la, we plot the pcwer-law exponent of ¢ (i.e., the logarithmic derivative with
respect to t) of the total energy as a function of /7o for both initial Froude number flows,
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FiGURE 1. The energy statistics: , Fo = 16.5; - - - -, Fy = 93.2; (a) time-evolution

of the power-law exponent of ¢; (b) verification of the scaling relation given by (5.3) with
v = 3/5.
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FIGURE 2. The integral length scales: ——, Fy = 16.5; - - - -, Fg = 93.2; (a) time-
evolution of the horizontal and vertical .. egral length scales of the total energy; (b)
verification of the scaling relations given by (5.4) with y =0 and z = —2/5.

where 79 = lp/ug. The asymptotic value of the time exponent is approximately —3/5,
indicating a value of z in (5.2) equal to 3/9, in sgreement with our heuristic argument.
In figure ib, we plot the propoitionality constant ¢ in (5.2), i.e., we plot the evolution of
e/ (Ag/ 34-2/5 N3/°), for both initial Froude number flows. The approximate convergence
of the two curves at large values of Nt confirius the overall scaling given by (5.2), with
ce = 1.6.

The horizontal and vertical integral scales of the total energy are plotted versus t/7g
in Figure 2a for both initial ¥roude number flows. Evidently, a large-times the horizontal
integral ecale is independent of the initial Froude number and the vertical integral scale
is independent of time. This implies that y = 0 and z = -2/5 in (5.3). In Figure 2b, we
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plot the evolution of ¢, and ¢;, for both flows. Again the overall scaling given by (5.3) is
confirmed, with ¢;, ~ 1.2 and ¢;, = 1.4.

We have thus presented findings of a new similarity state which develops at large
Reynolds numbers and small Froude numbers when the initial flow field consists of an
isotropic velocity distribution and no density fluctuations. It is also possible that the sim-
ilarity state which develops at small Froude numbers depends on the way in which the
initial flow fields are initialized. Metais and Herring (1989) demonstrated by direct nu-
merical simulations that the nature of the flow at small Froude numbers does depend on
the relative state of the turbulence and wave field before entering the low Froude number
regime. Some preliminary computations which we have performed verify that this is indeed
the case; we intend to report on these findings at a later date.
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Abstract

The evolution of the anisutropic structure of homogeneous turbulence in a stably-utratified fluid is investi-
gated. Our study is bused upon a comparieon between Direct Numerical Simulations (DNS), a statistical
closure model (anisotropic EDQNM) and its linear or " Rapid Distortion Theory” (RDT) approximation,
A very good agrestent is found betwesn DNS and EDQNM. Particular emphaais is given to the reversible
conversion of turbulent kinetic energy into poteatial energy and to the angular depandency of energy in
spectral space. The rise of an irreversible trend controlled by nonlinear interactions as opposed to a
reversible trend controlled by linear motions is shown.

1 Introduction

The theoretical and numerical works presented here are motivated to a great extent by recent experiimental
studies on decaying stratified grid turbulence performed either in » windtunnel, by Lienhard & van Atta
(1990) and Yoon & Wachafi (1990), or in a water tank, by Barrett & van Atta (1991). The measurements
made in these experiments have a high level of spectral resolution and accuracy compared to the salt
water experiments reported up tc now (e.g. Itaweirs et al., 1986), which enable the suthors to present a
mote detailed picture of the decay process.

When the Froude aumber (ratio of inertial to buoyaacy forces) is much larger than one initially, ithe
turbuliuce decays as a result of the usual cascade process. During this decay, buoyancy forces gain
importanice with respect to lnertial offects. When the Froude number becomes smaller than about two,
the large scales of the motion axe influenced by the stratification and vertical transport is weakened, while
the small scales continue their normal mixing. LV show that the small scales are in universal equilibrium,
in other words they are not affected by the stratification. This picture is especially clear with regard to
the co-spectrum of the heat flux. For small wavenumbers a counter-gradient flux is observed, while for
larger wavenumbers the mixing along the gradient continues. This usually leads to a net flux along the
temperature gradient. It should be acticed that YW obsctve a net counter-gradient heat fiux for their
wost stable run.

In the present study, we preseni results concerning the influence of the initial Froude and Reynolds
nuabers on the flow developmeat and the occurence of the counter-gradient heat flux. A form of
enisotropy in the sronll scales is also put to the fore. To get these results, we solved numerically a
hierarchy of mathematical models, nagely (i) the fully three-dimensional Boussinesq equations (perform-
ing Direct Nurnerical Simulations), (ii) an Eddy Damped Quasi- Normal Markovian (EDQNM) closure
mode} and (iii) its Rapid Distortion Theory (RDT) approximation.

The EDQNM model is a turbulence closure model in spectral space for axisymmetric stratified flow
{Cambon, 1989). The non-linear transfer terms of energy between the various wavenumbers are explicitly
calculated and the full 3-D (axisymmetric) energy spectru is available. The mode} is thus very suitable
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to study the anisotropy of the flow. However, the validation of the EDQNM model by the DNS is a
prerequisice before reaching higher values of the Reynolds number with the EDQNM model.

The RDT approximaton consists of neglecting the non-linear energy transfer terms in the EDQNM
equations and highlights the importance of the linear terms in the decay process. Moreover, analytical
solutions of the RDT approximations can be easily obtained.

2 Equations, models and relevant variables

The Boussinesq assumptions for turbulence in a stably-strasified fluid give the following system of equa-
tious for the fluctuating velocity field w;(x,t) and a modified temperature T'(x, t):

(8‘ ~+ Uy z,i- -y + ap = Té&s
(-&- + uj—a% - uV’)T = =Ny Q)
dui
) =0, (2)

where v is the kinematic viscosity (the Prandtl number is chosen equal to unity) and N is the Briint-
Vaisala frequency. The definition of N,

N = (Bvg)*/? (3)

involves the thermal expansion coefficient 3, the vertical mean temperature gradient v and the gravita-
tional acceleration g. Equation 1 displays N as the unique stratification parameter if 7" is scaled as an
acceleration (using the coeflicient £g), so that (T/N)?/2 can be interpreted as a poteutial energy.

In order to include in the models the detailed dispersion law of the linear wave regime and to reduce
the number of variables, u; and T are 3D Fourier transformed (superscript ). Thea the 4-component
set (i, is reduced to & 3-component set by introducing & new vector:

ik, t) = B;(k,t) + 1% %;-(k,t), P==1 4)

The reduction of the number of cornponents reflects the solenocidal property of the velocity field, in
accordance with equation 2, kji; = 0. The equation governing ©; is directly derived from equations 1, 2
and reads:

(88! + uk’) ik, t)+ N Lq(k)vj (k, f) / M(ﬂ(k P, )f)j(p,f)ﬁ((q,t) da (5)

Here ¢, and ite statistical correlations of any order and related equations, can be studied in other or-
thonormal frames of reference quoted below; all tensorial properiies are preserved by such projections,
including the definitions of invarisnts (energy) sund realizability constraints.

Accordmg to the Craya-Herring decomposition, s first orthonormal frame (¢!, €2, ¢?) is defined such
that e® is aligned with k (e} = k;/&) and e! liss in & horizontal plane. We thus have:

i, i) = Pk, 1) o] (k) ©
Then (e?, ¢%) generates i, located in the plane normal to k; @'e} (vortex mode) and $%e? (wave mode)
contams respectively all of the vertical vorticity and ell of the vertical velocity of the flow, whereas
= IT/N solely contributes to the potential energy.

The local frame (e', e?, e3) is particularly convenient for studying the statistical quantities Vi (k,t)
and Viji(k, p, t) obtained from the two covariance ratrices < 97 (k); (k) > and < 97 (k)5 (P)oe(Q) >

For axisymmetric tu:bulence gnunp!ut symmetry consistent with equations 1, 2) Vi;/2 has only four

non-zero components in (e!, e?, %)
. @ 0 0
Vij=| 0 ¢é2 ¢ M
0 ¢ ¢s
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which depend on k = [k| and cos(—g,k) = cos . Thus ¢;, i = 1,2,3 represents the different modes of
the spectral density of energy and ¢ generates the vertical buoyancy fiux, according to:

fo‘edak

%<uaT> = _/wsmadsk (8)

&= <>

Additional constraints are ¢; = ¢; and ¢ = 0 for cos§ = £1 (polar isotropy) and ¢; = 0,7 = 1,2,3;
dads— |¥[? > 0 (realizability). These four components s+ governed by the following system of equations:

(% + M’) skt) = T

(g + w) bak,t) = Th—(Nsind)y

(gt_ +2uk=) bak,t) = Ts+ (Nsinb)y

(g} + 2uk"') ¥(k,t) = Ty+2Nsinb(¢s —¢s) 9

where T3 ,i = 1,2,3 aad Ty are energy transfer terms which involve triple correlations. These terms are
zero in the linear viscous regime, which is given by the linear part of equation 5. This regime will be
referred to as the Rapid Distortion Theory (RDT) Limit.

In the extended EDQNM model {Cambon, 1989), the syatem of equations 9 is numerically solved with
an implicit treatraent of the linear terms (exact in the RDT limit) and an sxplicit form of T; and T;.

The clogure of these terms derives from the application of EDQNM te equation 5. The procedure is
the sarme as for rotating flows (Cambon and Jacquin, 1989) and is not given here for the sake of brevity.
Only the crucial parameters, which are characteristic times connected with triple correlations, are quoted:

O5pe = Bipgl1 + INOipy(crain(—g, k) + fsin(~g, p) + ysin(-g, )] (10)

with &, 8,7 = 0,£1 and fyp, includes both viscous aud eddy damping terms, according to standard
procedures, with one unique constant.

The sophisticated model 10 may cause realizability problems for particular initial data, because of
the sudden application of the stratification (the discontinuity in N leads to a discontinuity in 0:": ). Se
the simplest and less expensive model, which corresponds to N = 0 in equation 10, will be used ﬁere for
the detailed study of the system of equations 9, in which the stratification affects explicitly the linear
terms. Note that although stratification effects are not explicitly taken into sccount in equation 10, they
do enter implicitly in the transfer terms, since they involve double correiations by means of the closure
assumption.

2.1 Direct numerical sitnulations: numerical method

In order to ensure encrgy conservation, equations 1 are rewritten using the vector identity (u- Vi)u =
wxu4 Vigd|/? . Bere w = ¥ x uis the vorticity. The aumesics! domain is s cubic box of side 2x.
‘The boundary conditions are periodic in all $hree directions. The spatial derivatives and nonlinear terms
are treated numerically using a pseudo-spectral method in Fourier space. Time marching is done using
8 third order Adams-Bashforth scheme. The viscous term is integrated exactly using the new variable
v(k) = u(k) exp(vk?®t) (e.g. Vincent and Meneguszi, 1991).

3 Results

3.1 Initial conditions and physical paraneters

Six direct numerical simulations of a homogeneous stably-stratified fluid for a resolution equal to 643
are presented (see Table 1 for & description of these calculstions). The initial condition counsists of 2
homogeneous and isotropic flow field, initialized with the energy-density spectrum
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N vt | & /Qg &y | Fr Re
/6 | 200 | 1.5 { 1.007 00|58 |49
=/6 { 100 | 1.5 | 0.9987 | 0.0 | 4.02 | 27.5
x/3 | 200 | 1.5 { 1.007 00129 |49
x/3 | 100 | 1.5 | 0.9967 | 0.0 | 2.01 | 27.5
x 200 | 1.5 | 1.007 0.0 09749
x 100 | 1.5 1 0.9967 | 0.0 | 0.67 | 27.5

O:O’lnh-wt\:r—-g

Table 1: Description of the initial conditions (at ¢ = #g) of the 54 simulations presented in this paper;
to is the time at which the Briint-Vaisala frequency N is set to a non-gzero value; dt=0.0125. We use
the following definitions: Fr = (u?)Y?/B,N, B, = [ < wi(z,y,z + dz)ui(z,1,2) > dz/ < u} >,
Re = (w*)31fu, with 1= (3x/4)[5° E(k)/kdk/[," E(k)dE.

E(k) = 16 (2/7)"? uo® B4 k]S exp[~2(k/k:)?]. (1)

E(k;) is the maximum of the energy spectrum and ug = rms{u) = rms(v) = rms(w); here k; = 4.760
(Orszag and Patterton, 1972; Metais and Herring, 1989; Gerz and Schuman, 1890). The Briint-Viisild
frequency is st to a nonzero value as soon as the triple correlations have built and isotropy is equal to
1 (we usz &, /%2 as an indicator of isotropy, following Vincent and Meneguzzi). Let ¢ = ¢g be the time
at which stratification is added. Three different values of the Britat-V&isila frequency have been chosen,
N =12/6, N =x/3and N = r. The corresponding values at t = #; of a dynamical Froude number based
upon rms(u) aad a vertical integral lengthscale of u are irdicsted in Table 1. Each of these three siratified
calculations has been carried out with two different values of the viscosity, v = 0.01 and v = 0.005.

3.2 Discussion of results

In figure 1 the evolution of the total energy (kinetictpotential) is shown as s function of time for the
stratified case with a Briint-Vidsiild frequency of N = x, for botk the DNS and the EDQNM model. The
energy is made dimensionless by its initial value and the time axis is scaled with the Briint-Visiila period
2x/N. The results are compared with an isotropic run (N = 0), for which the total energy only contains
kinetic energy.

Figure 1 shows that for the isotropic case DSN znd EDQNM are in good agreement, with a slope of
decrease of energy of —1.1 at the end of th= run. However, the EDQNM model does not show any difference
between the isotropic and stratified case, whereas for the DNS the energy dissipation is clearly reduced
near the end of the run. (The other stratified runs we have performed display a similar behavior.) This
latter effect is due to a reduction of energy transfer by the stratification. As discussed in the presentation
of the models, the EDQNM model that we use here takes into account only implicitely the effect of
stratification in the transfer terms. An EDQNM version with these effects explicitely incorporated in the
EDQNM closure (see equation 10) already exists (and works successfully for rotationnai flows). We are
currentiy working on the specific problem of realizability for the case of stratified flows.

In figure 2, we consider the contributions of the kinetic energy to the total energy in both Craya modes
&, and @2; the potential energy, denominated as ¥y, is also plotted. Only the runs described in Table
1 with viscosity v <= 1/200 are shown. Figure 2 shows that the EDQNM model compares very well with
the DNS, both qualitatively and quantitatively. The &; mode remzins unaffected by the stratification,
whiie &2 and ihe poiential energy show an oeciliatory behavior, in a mutual exchange of ecnergy. Note
that from equations §, it appears that only these two modes contain a linear contribution due to the
stratification. Furthermore, the oscillations appear to be amaller for the lowest values of N (and of the
viscosity v, but this result is not shown). In other words, both a higher initial Froude number and a
higher initial Reynolds number reduce the cecillations. We will come back to this point further on in this
paper, where we will find that the non-dimeusionalized heatflux is a good ivdicator of this trend.

Let us now consider the RDT approximation, which highlights the importance of the linear terms.
(figure 2c). A very good qualitat.ve agreement with EDQNM aod DNS is found, which confirms that
the oscillations in ¥; and ®3 are produced by the linear teyms in the equations of motion. The decay of
energy is only due to the direct action of viscosity on all scales of motion.

The RDT approximation is a very convenient reference case, when considering the dimensionless
heatflux < wT > /(< w? >< T? >)/2. This quantity is a measure of the correlation of the velocity
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and temperature field. On integrating the RDT approximation of equations 9, it is found that the
dimensionless heatflux is independent of the initial spectrum prescribed as well as on the viscosity. When
the time-axis is made nondimensional by Nt/2x, it becomes also independant of N and reduces to a
unique form, which can be considered as a low Reynolds and/or Froude number limit.

In figure 3, the dimensionless heatflux is shown for all values of N and v, versus the normalized time
Nt/2x; the RDT case has also been included. The data collapse very well with this scaling. (Suck a
scaling has already been used successfully by Lienhard & van Atta, 1990, and yield an analogous collapse
of data caracterizing the stratified turbulence). In the pressnt case, both a strong stratification (high value
of N) and a high viscosity tend to incrense the dimensionless heatflux. The DNS results for v = 1/100
are in somewhat less agreement than for v = 1/200. One resson might be that EDQNM model becomes
less apt to properly model low dynamics when the Reynolds aumber is low.

The faci that the RDT solution is independent of the viscosity does not necessarily mean that the
maxima and minima of correlation reached are 41 or —1. The correlation is scrambled by the dispersion
relstion for the linear terms which makes every wavenumber mode to oscillate with a different frequency
N sind, depending on its angle # with the vertical direction,

In order to give an explanation for the dependency of the correlation on the Reynolds and Froude
pumbers, we need to realize that in terms of spectra of energy, linear terms are only dominant where the
non-linear terins are weak. Hence, the oscillations will be present for small wavenumbers and are thus a
phenomenon of the large flow structures.

For the RDT, linear terms will be present at all scales and impose an upper lirnit to the correlation
betwaen velocity and temperature field that can be oblained. Now since the RDT limit cau be regarded
as a low Reynolds number reference, increasing the Reynolds number will inevitably destroy a part of the
correlation. For high Reynolds numbers, the linear terms will eventually disappear and the correlation
will reach the positive value of about 0.7, found for the case of a passive scalar. It is worth noticing that
in moet grid turbulence experiments, the Reynolds number is higher than the values considered in this
study, and this may very poasibly be responsible for the non observation of any counter gradient heatflux.

The influence of the initial Froude number is less clear. On the one hand it is evident that a stronger
stratification promotes the presence of the linear terms and thus a stronger correlation. But on the
other hand, we represent the time scale in & non-dimessional form, using the Briint-Vaisiila period. For
instance, when the heatflux reaches its moat negative vaiue at Nt/2x ~ 0.4, time has advanced 6 times
further for the case N = x/6 than for the case N = . So, although the stratification is much weaker in
the former case, viscosity has had much ore time to reduce the non-linear terms. We can only coaclude
that apparently, the balance is such that a stronger stratification produces a stronger correlaiion.

As g final result, we will make a remark on the development and the definition of flow anisotropy.
We will use results from the EDQNM model. In figure 2, the classical type of snisotropy is expressed by
means of the spherically integrated spectra of ¢; and ¢3. This confirms the statements made above that
a reversible kind of anisotropy is produced by the linear terms in the equation of motion and that this
anisotropy is limited to low wavenumbexs (figure 4a).

We found that on the other hand an irreversible kind of anisotropy develops, which has the character
of a directional (angular) dependency of the spectra. This is illustrated in figure 4b, where the energy
spectrum is given for three different spectral augles 6, between the wavenmnber vector and the vertical
direction, (cos 8 = 1 corresponds to the vertical direction).

We have found that generally this irrevesible kind of anisotropy is stronger for higher Reynolds
numbers. Also the effect is important in the region of the spectrum where the non-linear terms are
dominant, as is confirmed by figure 4b.

4 Conclusions

We hLave investigated the influence of the initial Froude and Reynolds number on the evolution of freely
decaying stably stratified turbulence. We have corapared resulis obtained by means of Direct Numerical
Simulations (DNS) on a 64° grid with those of a statistical EDQNM model extended to anisotropic flows.
The results of the comparison are as follows.

The EDQNM model compares very well with the DNS results, both qualitatively snd quantitatively,
especially for the high Reynolds number case. However, for the DNS a reduction of the energy transfer
terms has been found, which is not reproduced by the EDQNM model. A more elaborated mode! is
actually being developed; such a model has already proved to successfully reproduce the reduction of the
energy transfer in the case of rotational flows.

It is shown, on using Rapid Distortion Theory (RDT), that the linear terms in the equation of motion




are responsible for the oscillatory behavior observad aud that they are located at the low wavenumber
end of the cnergy spectrum. The RDT serves as a reference low Reynolds limit case in which linear
ternis dominate. Thess terms create a strong oscillatory behavior of the dimensionless heatflux with
periodically counter gradient hezt fluxes. As the Reynolds number is increased, the linear terms become
relatively less important and the correlation between the temperature and velocity fields decreases.

A high Froude number has in principle the same effect, since it makes the linear terms less important
compated to the non-linear oues. However for a given dimensionless time Nt/2x, the corresponding low
value of the Briint-Viisali frequency N, makes that time evolves longer than for a high value of N and
thus non-linear terms have more time to dacrease. We found for the Froude and Reynolds considered
here that a high Froude number reduces the correlation of the velocity and temperature fields.

We furthermore found for the EDQGNM calculations that it is necessary to distinguish between two
different kinds of anisotropy. The directional anisotropy is cavsed by the linear terms snd has a reversible
character. The second kind of anisotropy describes the directional dependence of the energy density and
is not reversible. The tendency is such as to create a surplus of energy in the vertical direction (the pole
of the spectrum). This trend corresponds in physical space to a larger variability in the vertical direction
than in horizontal planes, in accordance with pancake turbulent structures observed in the atmosphere
for instance (e.g. Dalaudier et Sidi, 1994).
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Some current problems in stratified turbuient flows

C W Van Atta

Applied Mechanics and Engineering Sciences and Scripps Institution of Geeanography,
Univegsity of Californis, Sar Diego, La Jolla CA 92093

INTRODUCTION

An esscatial ingredient of turbulent flow is fluctuating
vorticity, and the main effect of stable stratification on
flsctuating vorticity is the bareclinic generation of new
vorticity, acccording to Bjerknes' famous theorem.

There is presently sncertainty over which, if any,
well established properties of turbulence in
homogeneous fluids can be expurted for ase in stabiy
stratified fluids, and, when these laws fail to describe the
b:haviox in the stably stratified case, what must replace
then.

This talk will attempt to illustrate the flavor of some
current research prablems by considering severat
questions presently under study which address aspacte of
the evolution of baroclinically generated vorticity in
turbulent {lows. Both qualitative and quantitative
differences with liomogeneous fluid flow behavior will
he discussed.

BAROCLINIC VORTICITY GENERATION
IN THE STABLY STRATIFIED MIXING
LAYER

To clearly illustrate the process of baroclinic vorticity
generation we first lock at the initial, laminar,
development region of a stably stratified turbulent shear
layer uudergoing Kelvin-Helmholtz instabilisy. This
instability piays a promineut role in both asmospheric
and oceanic shear layers, and may often be obscrved in
cloud pattarns. As an idealization of real geophysical
flows, counsider a iaminar shear Jayer flow in which
lighter fiuid flows horizontally over a heavier flaid,
wiilt gravily acting in e vernical ditecion. When the
interface beiween the two fluids of different density
moving at different speeds rolls up due 0 Kelvin-
Helmholtz instability, a cross section through the X-H
rolles looks like the spiral pattern of a jelly roli. The
jelly is ane flvid, the dough is the other. In some
places along the inter{ace betweer the two fluids one
has light fluid over heavy (statically stable) but at
others one finds heavy fluid cver light (unstable). Fora
homegeneous fluid, it the next step of the instablility
pracess three-dimensional vortices form, smaller in
cross section wan the K-H billows, which have their
axes wrapped around the X-H billows. These 3-D
voriices are efficient at trausporting momentum and

scalar properties, and so the xate of stirring and mixing
of the fluid increases, But for the density suatified case
Schowalter et al (1994 ab) found that the initial
formation of the "streamwisc" vortices produces
baroclinically generated vorticity of opposite sign at the
stable interfaces and baroclirically generated vorticity of
the same sign as the imitial vortices at the statically
unstable peitions of the interface. The net result is that
the vortices tormed at the stable portions of the interface
are much weaker then in the horogeneous case, and the
3-D stiring and subsequent molecular miixing is
dominated by the voniices forned by the convective
instability on the statically unstable parts of the
interface.

A conceptual modzl of Broadwell and Breidenthal (1982)
examines the rate at which a turbulent shear layer
actually moleculerly mixes the different species in the
two streams, which depends on the rates of entrainment,
macrozcupic deformation, and molecular diffusion.
Entrainment is the slowest step unless D<<v, where D
is the molecular diffusivity and v is the kinematic
viscosity. In gases, D/v ~ 1 and entrainment is the
bottleneck. In liguids, however, v may exceed D by a
factor of hundreds. or more, so that entrainment and
diffusion may boin provide important consixamts on the
mixing rate. Many analytical, experimental, and
numerical studies have been made for the humogeneous
fluid case. By comparison, only a few esults are
available (¢.g. Kuop and Browand, 1979) for the stably
suatified turbulent mixing layer, and the time would
seem to be ripe for more experiments, numerical
simulations, and analytical models.

EFFYECTS OF MEAN STRAIN ON
TURBULENCE DYNAMICS IN A
STRATIFIZD FLUID

In flows over vertica! topozraphy in the ocean and
atmosphere the bunching together (or divergence) of the
mean seamlines in a vertical plane is accompanied by
a similar bunching (or divergence) of the isopycnals
(surfaces of constant mean density). As the isopycnals
bunch together the ww:ean density gradient increases, and
where they diverge the mean density gradient Aecreases.
There are thus two, sometimes competing, effects,
mean strain and spatially variable buoyancy effects.
The turbulence levels and vertical turbulent transports
can be highly variable in such flows. The question
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arises whether one can expiain this bekavior as an #ffect
of the mean strain of the flow and the spatial changes in
he Valicala frequency M=(-g/p dp/dz)'”?on ‘he
turbulence.

For honiogeneous fluids the eftect of mean s‘rain on
wrbulence war examined i1 he early 19C0's in
connection with wind tanngl contracions, which were
employed to reduce the celative wrbuleace level u'/iJ in
the stream, where u’ i, the 1ms streamwise fivctuation
in veiocity and U is the mean velocity. The
longitudinal flucteations decrease passiag through the
contvaction, while the rms latera( fluctuation w’
increases through the contraction due to the stretching
of streamwise vostices (Pranddl, 1933).-

Th: simplest stably stratified flow for consideration of
strain and variable buoyancy effucts is flow of a
uwrbulent siz2tified fluid with zero mean shear througn a
veztical contraction. The vertical contracuor corfines
the flow ic a shorter vertical exient, thus increasing the
siratificaiion sirength and tenaing o damp vertical w'
fluctuations, but a1 the same dme it stretches
‘ongitudinal vortice: as in the homogenucus case.

Experime-ts by Thoroddsen and +'an Atta (1994) show
that th~ addition of stable stratiiicarion changes the
evolution of u' very little. Howeve:, w' decays more
sepidly before the conkaction because of ihe non zero
value of N, and flattens out in the contraction. Ther, as
the flow leaves tii» contraction » surprising behavior of
w' is coservad. w' firt decreac:s i a very low level,
und then increases 0 2 mlative maximuia value and
ilien oscillates T the rest o is observed evolution!

The physiss behind this behavior becomes appacent
when examining the cvolution of the rms denuity
fluctuation p'. p' ‘ncreases befor. inside, and after ke
contractior, reaching a maximuym value at the same
location where w' reachad a mimimuw, and then
decreuses. As ;' is poport'onal to the s fluctuzting
potencinal energy «f the wirbulencs, and w' s
proportionsd to the (luctuating kinetic aurrgy of the
turbulence cthe observed behavior reflects exchange of
energy betwean the potentic] and kinstic energivs. Gerz
and Yamazaki (1993) found 2 cimular growth of the
vertical kinetic eneyy in numerical simulations which
had an iaitial density fluctuation fiel¢ cnd zero initial
velocity floctuation field, avd suggested the imm
zoidie turbulence to cscribe the phenorenon,

HOMOGENLOUS TURBULENT S#EAR
FLOWS

In homogeneous turbulert shear flows, the gan
velocity U i the x direction: is a linear function of the
Iteral coordinate z, i.e. U(z)=az. All staiistica!
Luantities ¢-e independent of 2. Experiments show that
for a ronstatified, homogenzous fluid the wcbr lence
produccion exceeds die dissipation and the veaocity

flucwations grow spatially with x withnut cound,
roughly expenentially witn x. Simifar behavior is
found ir gdirect numerical simulations in which the
turbulence develops in time rather than spatialiy. If the
flow is stavly stratified Rohr et al (1983) found that the
growth rate of the irbulence is a decreasing functicn of
the Richardson number fur R<R.;, and becomes
negative for R>Ry, with ' equal to roughly 0.3. For
R=R,, th¢ turbulence kinetic ensrgy producticn, kinetic
energy dissipation, and buoyancy sink term which
prodv-2s potential energy are in balance, and the rms
energies in the velocity and dengity fluctuations is
constznt. There is, howeaver, a continunl spectral
redigizibution from small to large scales takin;; place, 50
that equilirtinm is not reached in wave numbder space.
Direc: Nwmerical Sisaulations (DONS) of Flolk et al
11992) suggest thay the critical Richa-dson aurcber
might be a function of Reyaolds number, but thix has
o5 so far been ssen experimestally. DNS results aiso
suggest that there are cohercnt structures in
homoginevus shear florvs in the form of horseghoe-like
vortices orieni»? nearly along tF  principal exiansionai
strain direction and that the effx . of siable stratirication
in reducing the vertical transport o5 associated with 2
weakeaiing of these artical structures, he observation
of such stvuctures, she.dd they exisi, is a rhalienging
problens, Piccirillo and Var. Awa (1994a) have exiended
v large Scl.midt number resyiis of Rohr et 2l (1985 w
Prandtl number of order one wsing tensperature
strat-fication in ais . These Jata we cbtaines in a uovyl
strav ied shear flow caannel descrivzd hy Piccirilio and
Van Atta (1994b). Tae lower value of 2 Pr numbet will
allow a mor: definitive conv;*arison of a direct rwacrical
simulation, v’hich are so tz' limited o small £, with
enperiments.  Scenie aspocs of this. data and
simuiations will be compared in e presen: t2'x.

DOES LOCAL ISOTROPY UX:ST 14
TURBULENT SHEAR TFLOWS °N A
ETABLY STRATIFIED TLUID?

In Large Eddy Sivaulations the farm of ii:2 small scai:
motion must be assumed bdefors doing a flow
calculaticn. The sumplest possibie form s & smal:
scale turl.alent field obeying (he constraisis of Jocai
isotropy. Accerding .o Kolmogorov's origiaal ideas, in
2 homogeneous fluid >ue should expect to see local
sotropy in the smal! sca'es in a wrbulen? shear flow,
provided tha: the scale <eparatior. etwee: large and
smail secales is sufficiently large. “"Local Isotropy”
meacs isocopi. behavior over a ¢ xtain restticted or
"local” wave number sanze. The relations for ocally
isotrug-ic hehavicr of spectra, gradieni moments, eic. are
derived purely from ki vnatical and contnuity
argumer:ss, not trem dynowics. A large keynolds
number :s not mecessary for iocal i atropy, Sui the
extent <t the regicn of loca' 1sotray is expected o
increase with Reyn-ids number. The smailest scales in
a low Reynolds number turbulen f.ow often =xhibit
tocal isotropy. Hoviever, it scems roasonable thay if the
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rutic of mean strain ¢ fluctuating sizwin is large encugh
on¢ would mxpect anisstropic behavio:. For energy
spectra of the velocily and scalar tlaciuations,
Kolmogorov's idea appzars to be borme out.
Experiments and DNS at low Kj show isotropic
behavior at the smalles: scales only, while expetiments
i the laboratury, atmosphere, and ocean show that the
extent of isotropy increases as R increases. For a
review and recent laboratory experiments at high R), see
Praskovsky ct al (1993). For moments of velocity and
scaiar gradients the available daia show a marked degree
of anisatropic behavior, This is at first puzzling, as
wking gradients is expected 1o emphasize the
contrivutions of the fine structure. However, as is well
wown for nondifferentiated velocity and temperature
flustaations, such momerts do include contributions
from all seales, can be very sensitive to sharp gradients
found near the edgss of large scale coherent structures,
&nd are generally not snitable for examining particular
wave numbe. ranges for locally isotropic behavior. The
degree of iucal isotropy miay be unambigucusly
examincua by comparing the relative behavior of spectra
»f the gradients dire+dy with the appropriate rclations
tor local isotropy, as discusced in Van Aua (1991).
This haz ve: to be done for turbulent shear flows, as
wmost studies to daie have measured only moments and
nnt the spectrs of gradients. An exceplion is the work
of Dahm et al (199]), in which it was found that the
speciza of the small scale scalar gradient field (ali three
composents were measured) obeyed isotropic relztions
within the uncectainty of the somewhat limited
statistica! sample.

Rut what is the expecied behavior in & stably stratified
fiow? If a range cf scales exists that ars not affected by
stratification then there might be local isifropy in that
range. The corumon wisdom telis us tnat in a steady
stats stratification wnost strongly affec:s scales larges
than the Ozwnidov scale Ly = (&/N)' where ¢ is the
dissipaticn rute of turbulent kincctic energy, and that in
decaving shear free turbulence strasification should affect
the largest scales first. Howevei, Tharoddsen and Van
Atta (1993) found exprrimenteily that for decaying
stratified gnd turbulence momenis and spictra of
velity dorivatives, which emnphasize the smalles scales
and iniaily obey isotropic relasions carly in the decay,
very strongly departed from isotropis behavior right
after the beginning of the decay. A similar behavior is
found for temperature gradients. Since one would have
cxpected the icrgest scales wo be affected firse, it is
swrprising that the gradienss are affected even before
theie are large efiects on large scele properties like
turbulence intensities and buovarcy flux. Perlaps the
range of sczles in these experimerts is too small o
expect substantial local iscuopy unrder stratiited
condmons. It would b~ very useful to anave further
experiments or numerical sinuiztions covering several
more decades in R). Such a range would be very

difficult for experimsnialists to achieve and is presently
not yet pussible even for divect numerical simulations.

REFERENCES

Broadweil JE zn6 Breidenthal RE, A simple mode] of
niixisg and chemical resction in a turbulent shear layer,
T Fluid idech 128, 397410 (1982).

Dahm WZA, Scuthesland KB, and Buch KA, Direct, high
resolution, four-dimensional measuremeats of the fine

a2 sbucture of Sc>>1 moleculsa mixing in wrbulent
flows, Phys. Fluids A, 3(5), 1115.1127 (199).

Gerz DT and Yamazaki H, Direct numerical simulation uf
buoyancy -driven turbulenwe in stably stratified fluid,
J Fluid Mech , 200, 563-594 (1593).

Holt SB, Kosoff JR, and Faziger JH, A numerical study of
the evolution and structwre of homogencous stably
stratified slewed twrbulence, J Sluid Mech , 237, 499-
539 (1992,.

Koop C5 snd Browand FK, Lustability and turbnlerce in a
stratificd flusd with shear, J Fluid Mech , 83,135-159
(1979).

Piccirillo P and Vait Ara CW, The evolutisniof a
uniformly sheared thonaally stratified wrbulent flow,
4 Fluid Mech . (in preparstion, 19944).

Picclrrilio P and Van Ana CW, An experimental facility for
producing thamally stratified wrbnlent flovs with
xbitrary velocity and density profiles, Experimen:s in
Fludds, (in nspsrwdon, '994b).

Prandil L, Arrining a dtoady air stream in wind tonnels,
NACA T™, 726 (1933).

Praskovsky AA, Ka-yakin M Yu, and Kuznetsov VR,
Experimental verification of lacal isotropy assumption
m high Reymwlas nwnier flows, in Proceedings of the
Third European Turbulence Congerence, Stockholm,
1830 (1991).

Rotr I, Iisweire EC, Hetiand ION, and Van At CW,
Growth aind decsy of mrbulence in a stably stratified
shear flow, J Fluid Mech , 195, 77-111 (1988).

Schowaiter DG, Van Aua CW, and Lusheras IC, A sidy of
stierwise vortex striucturs in a siratified shear layer,
submitted to J Fiuid Mech 19943).

Schowalter DG, Var Atta CW, and Lash=zas JC, Baroclinic
generation of «xeamwise voricity in a stratified ghear
iayer, Meccanica (in pres, 1994b).

ThoroCdsen ST and Van Aua €V, The influence of statle
stratification on sinall-scule anisotropy and
dissipation in wrbu'esie, J. Geophys. Res.- Orwans,
57, C3, 35647-3858 (i%92).

Thoreddsen ST and *an Atta CW, The effect of mean straa
on turbulence dynamics in . stably stratfied fluid,

J Fluid Mech (in press, 1954).

Van Atta CW, Local izotrony of the smallest scales ol
turhuleat scalar and velocity fields, Proc. Roy. Soc.
London Ser. A, 434,139-147 @™v1).

e et  emt———— e

e . —




el e et

Diffusion in the Presence of Stable Stratification
J.R. Herring and Y. Kimwura
N.C.A.R., Boulder CO 80307
U.S.A.

Abstract

We examine results of direct numerical simulations (DNS) of homogeneous turbulence
in the presence of stable stratification with the goal of contributing to ‘inderstanding
the effect of stratification on eddy-diffusion, and the distribution of pairs of particles
released in stable stratified fluw. Both rotating and nor-rotating studies will be included
in our purview. On a simple level, stratified turbulence may be considered as a wixture
of turbulence (with vortex stretching) and waves, with the waves at laiger scales, and
curbulence at smaller scales ( smaller than the Ozmidov scales (Ozmidov (1963)). We first
discuss whether such characterization is reasonablz. This assessment is made by comparing
DNS results for diffusion of a scalar with simple closure estimates, which are extensions of
the method introduced by Larcheveque and Lesieur (198) to the case of stratified dows.
As may be expected, the stable stratification reduces the pair separation in the direction of
stratification, and leaves the separation in the transverse directions unaltered. The pair-
digpersion is well predicted by a theory which includes the anisctropic natuve of ihe flow
and incorporates the Brunt-Vaisild frequency as a damping rete for dispersal. We also
discuss the rednuction of eddy—diffusion due to stratification, and compare the numerical
findings with the theoretical estimates of Csanady (1964) and Pearson et al. (1983).

1. Introduction

The inhibition of eddy transport by stable stratification is a topic of interest both in
atmospheric and oceanic dynamics. The source of this inhibitiop is clear if we recall that
stability implies vhat the total energy is partitioned between waves and turbulence, and
only the latter is efficient in eddy transport. In this paper we examine this issue using direct
numerical simulation (DNS), and simple scaling laws and underlying concepts drawn from
the statistical theory of turbulence. Such statistical ideas are cleanest at asymptotically
large Reynolds numbers, a domaiu remote from DNS. However, the basic assumptions of
the statistical theory apply eaually to low Reynolds number, rapidly decaying flows, and
in this paper we check to see to what degree DNS and statistical theory agree in the low
Reynolds number limit (R ~ 20). Our method is to use the statistical theory to extract the
functional dependence of dispersive effects on turbulence specica and control parameters,
aud compare these to the DNS. More importantly, the DNS should provide clean and
independent duta quantiiying the etfects of stratification. Sec. 2 records the equations
of motion of the DNS, and deucribes simple statistical predictions for eddy diffusion and
particle dispersion in the presence of stable stratification. Sec. 3 describes the numerical
techniques of the DNS, and discusses its relation to statistical theory.
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2. Eddy Conductivity and Particle Dispersion for Stratified Flows

(«) Eddy Diffusion with Stratification.

We sketch some theoretical notions about the effects of stratification on eddy diffusion.
We do this within the Limits of incompressible Navier-Stokes which we write in standard
non— dimensional form:

(B ~oVHu=-uV . u-Vp+§f—-22 xu 1)
(6 = V30 = ~N%w —u. V8 @)
V.-u=0 (3)

Our notation is that (u,8) are the velocity— temperature fluctuations. The (z,y, ) com-
ponents of u are (¥,v,w). N is the Brunt-Viisild frequency, \/ga(0T/0z)/T;, and
g = (0,0,-1). In the present preliminary version of this paper, shall not discuss the
effects of rotation.

Consider first unstratified turbulence. We may estimate eddy conductivity by the
formula of Kraichuan (1976), (see also Lesieur (1990) for more discussions):

Kedsy = (2/3) / = dkB(k) n(k), @

where E(k) = (1/2)(] u(k) [?) is the kinetic evergy spectrum, n(k) the eddy circulation
time at scale 2x/k. In Herriag et al. (1982) p.419 et seq. it is argued that an approximate
formula, derived from the Test Field Model (TFM), is

k
(k) ~ fu dpp E(p) 5)

Cousider next how effects of stratification may be included by modification of (4). Folklore
hag it that stratification means waves (oscillations at large scales), and “ turbulence ”
(overturning events) at small scales. The dividing scale between these is the Qzm®lov
scale at which the eddy turnover rate is equal to the gravity wave frequency. Denoting
this scale by kg, we estimate its value from:

Ia)

n(k) =

N &)
At large Reynolds numbers, for which E(k) ~ €*/2k5/% kg = 1/N3/c. A naive suggestion
is that wave-motion contributes little to particle dispersion, so that ( 4) should be replaced

by:
Keday = (2/3) /k dkE(K)/n(k) )
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Of course, we must take account of the change of E(k,?) induced by siratification. A
closure estimate of E(k) is obtained by equating the energy flux to small scales (¢) to the
integral of the energy transfer, T'(k),

(84 + 2vk?)E(k) = T(k) (8)
and evaluating the latter as entirely local in wave number space. There results:
e = {KE(k)/(n(k) + N)} E(k)[k] (9)

Here, {-} is the square of the turbulence force, (y(k)* (estimated here as ~ k*E(k)))
times the length of time this foree acts (~ 1/(N + /B3 E(k}). The factor (k] estimates
fi {etc.}dk’, an integral over all scales that comprise the net flux, ¢. Note that (9)
suggests that the energy spectrum changes from its wave dominated form (vVeNk=?) to
the turbulence dominated form (¢#/2k~%/3) at ko. Then using (9), (7) becomes:

Keady ~ €[N (10)

We remark that (10) also results from Taylor’s classical formula that evaluates k.44, in
terms of an integral of the Lagrangian autocorrelation, U(x,1 | s), along particle trajecto-
vies:

waaty ~ [ Ut | o) (1)
U(x,t | 8) = (u(x,t) - ux,t | s)), (12)

provided we take for the Lagrangian decorrelation of U(k,t | s)
Ukt | 8) ~ Uk, ¢ | tlexp{—(n(k) + sin(d)N)(t - 5)} (13)

Here, ¥ is the angle k makes with the vertical. Of course, the exponential characterization
in (13) is a matter of convenience rather than of accuracy.

(b) Pair Dispersion.

Let P(p,t) be the probabilily density that two particles of fluid initially at
(1(0),r2(0)) have & displacement p at time ¢:

P(p,t) = (§(p — (r2(t) — ra(t))) (14)
wheve {-) denotes an ensemble average, aud
dr(1,2)()/dt = u(r(y,a), t)- (18)

Here u is the velocity field, and d/d¢{ -} is the rate of change of {-} following particle
trajectories: = (0; + u- V){:}. Here §(-) is the initial unaveraged distribution of particle
pairs (Dirac’s delta function). The equation of motion for P is:

P(pyt) = {(w(t) — ua(t)) - V,6), (16)
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8,6 = (uy () — uz(t)) - V,6, =

§=6t=0)+ _/t dsAu(s) - V,6(s), => (1)
0

:P(p,t) = (A(u(t)) - V, [ dsA(u(s)) - ,8(s)), (18)

where Au{t) = uy(t) — uz(t). At this point, we invoke a quasinormal factorization of the
ensemble mean, and interpret the time integrals as along Lagrangian trajectories. Thus,

0P (p,1) = (A0, -V, [ dsiM(u(p,s)- VoP(o,s) (19)
The evolution of moments such as

(Papm) = _/ dppnpmP(p,t) (20)

follows from (19) after partial integrations:

Oi{pnpm) = /; ds(2Unm(0,t l 3) = Unin(p)? l 3) = Umn(p,t | 3)) (21)

In the long time limit, the terms depending on p msy be dropped, and the first term is just
the eddy conductivity, (4), as is well known. A crude estimate of dispersion is obtained by
first writing the Lagrangian decorrelation U(p, t | 3) in its wave-number representation

U(prt] 8) = / dkexp(—ck - U (K, t | 3) (22)

and then approximating U(k,t | s) by (13), with n(k) given by (5). In (22) we assume the

total decorrelation is that produced by the internal (random) sirain (4/ f: p*E(p)), and
stratification. We estimate the net effect of these by their product. Here, ¥ is the angle k
makes with the vertical.

The derivations of this section are quite heuristic in nature, and are preseated to
introduce various statistical quantities, and their possible utility in relating DNS results
to theoretical concepts.

3. DNS Results and Discussion of Theoretical Issues

The DNS consists of an initial Gaussian isotropic velocity field, which is allowed to
decay. After one eddy circulation timne (when the skewness foctor builds up to its nominal
value of ~ .3), stratification is introduced, and temperature fluctuations are induced via
(3). The basic code and numerical procedure is described in Kimura (1992); our treatment
of the stratification is similar to Métais and Herring (1989). In order to obtain particle
trajectory information (as well as Lagrangian covariances, as in (11)), trajectories were
computed by solving dX(t)/dt = u(X,t), with cubic-spline interpolatiox used to get the
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necessary fine-scale information for X(2). The method is thus quite similar to that of
Yeung and Pope (1989) and Yeung { 1993). Computations were carried out on NCAR's
IBM SP1, at resolution of 64°. We plan to refine these calculations at higher resolution
(128% — 2563 ), possibly on the Cray 3. At that stage, we shall also implement large-scale
random stirring, in order to investigate stationary turbulence.

Fig. 1 shows histograms for the vertical dispersion of particle pairs for cases N? =0,
(a), and N% = 50 (b), at ¢ = 3.0. Initially, the inter particle-pair distance was .5 mesh
lengths. These distributions are un-normalized. Notice that stratification severely inhibits
diffusion in the vertical, a result similar to that found by Riley and Metcalfe (1990) in
their study of a turbulent patch introduced into stably stratified fluid. As time proceeds,
(t > 3.0) the unstratified histogram continues to broaden, while the stratified histogram
widens extremely slowly, if at all.

Fig. 2 illustrates the effects of stratification on enstrophy. The N? = 0 (case (c))
shows the familiar pattern of elongated vortex tubes, while for N? = 10 (case (a)) we
see flattened vortex patches. Further analysis of this case (not shown) shows that the
enstrophy here is comprised mainly of vertical vorticity. Fig. 2 (b) shows the temperature
fluctuation field for N? = 10; a pattern similar to (a) for the enstrophy. It would be of
interest here to also examine the associated heat flux distribution, wé.

Fig. 3 shows the mean vertical dispersion of particle pairs for (N? =
0,1,2,5,10,20,& 50). At late times, there are step-like increases in (p?), which may be
explained by the relationship between (p?) and the Lagrangian autocorrelation function
(see (21)).

Normalized autocorrelation functions are shown in Fig. 4, for several values of N2,
Notice that R(V,7) has an oscillatory behbavior, much like that proposed by Csanady
(1964), and as crudely parameterized here by (13). It would be of interest to explore the
functional form that should replace (13), and this can be done with the numerical data
presented here, especially if extended to the stationary case. An interesting question here
is the extent to which Csanady’s model,

R(7) = exp(—pr)sin(ar + 6) (23)
is accurate.

Figure Captions
Fig. 1 Distribution function, P(p,t) for N2 =0 (a ), and N? = 50 (b).

Fig. 2 (a,b): Iso-surfaces enveloping regions where enstrophy (squared vorticity) or
squared temperature fluctuations (b) exceed 4 times their averaged value for N? = 10.
(c): Iso-surfaces enveloping regions where enstrophy exceeds 4 times its averaged value for
N2 =0.

Fig. 3 Mean vertical dispersion of particle pairs, {p2)(¢) for N2 = 0,1, 2,5, 10, 20, 50.

Fig. 4 Lagrangian velocity auto-correlation function {w(¥)w(to + 7))/{w?(fo)) for
N? =0,2,10,50. Here, t; is one eddy circulation time (about twice the time needed for
enstrophy to achieve its maximum for the unstratified case).
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ON GRADIENT-TRANSPORT TURBULENCE MODELS
FOR STABLY STRATIFIED SHEAR FLOW

C. Kranonburg

Dept. of Civil Engineering, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands

The gradient transport model for stably stratified horizontsl shear flow in which eddy diffusivity ond visoosity
arc wssumed to depend on the gradient Richardson number, Ri, is augmentod with terms roprosenting the finite
adjustment time of the exchange coefficionts. Barenblatt ot al, (1993) showed that using such a model, initial
value probleis for the formation of & stsp-wise structure of ths buoyancy distribution axe well posed. The model
proposcd is analyzed taking into accouat the interaction between buoyancy and veloeity ficlds. A condition for
the formation of steps is derived from a linear stability analysis. Numerical computations show that a realistic
step-wise finestructure develops, provided linear instability is allowed on a finite interval of Ri only.

1. Introduction

In simple gradient-type turbulence models of horizontal shear flows the vertical transports of
momentum and scalar quantities like mass or heat are assumed 0 be proportional to (minus)
the vertical gradients of mean velocity and scalar, regpectively. Under stably sizatified
conditicns the proporiionality coefficients, that is, eddy viscosity and diffusivity, decrease
with increasing gradient Richardson number Ri, because the stratification reduces the
exchange. As a result the vertical distributions of mean velocity and buoyancy associated with
the scalar quantity are coupled, Ri depending on both velocity and buoyancy gradients.
Gradient-type turbulence models have been invoked to explain the developiment of step-wise
structure (a systera of layers and interfaces) in buoyancy distributions observed in the deep
ocesn, lakes and estuaries. Phillips (1972) considered the buoyancy equation only, and
suggested that an effective ditfusivity related to the eddy diffusivity could become negative
for large Ri thus leading to instability and possibly a step-wise structure. Posmentier (1977)
solved the buoyancy ~quation numerically and cbtained a step-wise buoyancy profile for a
linearly uustable case. However, substantial filtering was needed to suppress instabilities,
which arouses some doubt as to what turbulence model was actually considered. Krarznburg
(1982) showed that including the interaction between buoyancy and velocity fields results in

more stable behaviour, and argued that solutions should be stable because ensemble-averaged

model equations may no longer exhibit the simall-scale instabitities of diffusion-type models
with negative diffusivity.

Rarenblatt et al. (1993, hereafter BEDPU) stated that such models are inadeguate because
initial-value problems are ill-posed and solutions are non-unigue. These authors took into
account the finite adjustment time of the turbulence by intreducing a time delay in the eddy
diffusivity together with a Taylor expansion for sinall time defays, and showed that in this
way a well-posed problem results. BBDPU presented accurate numerical solutions of their
model equation, and thus were able to show that in the linearly unstable case a step-wise
structure evolves from an initially smooth buoyancy distribution. BBDPU did not consider the
interaction with the velocity field.

On the experimental side, Long (1972) reported the spontaneous development, at a
particular value of an overall Richardson number, of three layers in the strutified shear-flow
apparatus aiso used by Moore & Long (1971). Ruddick et al. (1989) observed the formation
of multiple layers and interfaces in a laboratory tank in which a linearly stratified liquid was




present initially. The liquid was stirred so as to avoid generating a mean flow. Layers
developed provided stirring was weak, although a minimum level of stirring was needed
presumably to overcome molecular effects.

In the work reported here the suggestion of BBDPU is explored in conjunction with the
interaction between mean buoyancy and velocity fields. The finite adjustment time of eddy
diffusivity and edidy viscosity is taken into zccount, in Section 2, in a somewhat different way
by augmenting the usual relationships between exchange coefficients and Ri with terms
consisting of the time derivatives of these coefficients multiplied by a time constant. In
Section 3 the linear stability of the turbulence model thus modified is addressed, and
numerical solutions are presented in Section 4. In Section 5 the implications for the
development of finestructure are briefly discussed.

2. Mathematical modgl

Consider a stably stratified shear flow that is horizontally homogeneous so far as mean
quantities are concerned. Assuming the vertical turbulent transports may be modelled as
gradient transports and adopting the Boussinesq approximation, the conservation equations for
mean horizontal momentum and buoyancy are

ou _ @ U 2.1
2.2
OB _ (g OB 2.2)
ot az(K" az]

where U is the mean horizontal velocity, B = -gbp/p, the mean buoyancy, g the acceleration
of gravity, p, a reference density, 6p the deviation from p,, z the vertical coordinate
(positive upwards), # time, and K,, and K, are the eddy viscosity and eddy diffusivity.

The method of averaging, which defines U and 8, for example, is not trivial here. If the
mean quantities were ensemble averages, step-wise solutions would be unrealistic. The initial
conditions affect step-wise solutions for all times because of the intrinsic instability of these
solutions. As a consequence, steps would develop at different levels in each realization so
that, upon averaging, smooth disiributions of U and B would result. For step-wise soluticns
to be physically acceptable, mean quantities therefore must be assumed to represent horizontal
averages obtained from a single realization.

As also noted by BBDPU, second-order closure turbulence models are usually based on the
balance equation of turbulent kinetic energy. An additional equation is needed to estimate the
length scale of the energy containing eddies, and the exchange coefficients. A formal
expression for such equations can be written as (e.g., Launder & Spalding, 1972)

Y

= 8, 2.3
= = Sy @.3)

where ¥ is a turbulence parameter, e.g., turbulent kinetic energy, or dissipation rate, and Sy
a source ferm representing production, destruction and redistribution of V. Because Sy does
not contain any time derivatives, eguations like (2.3) can in principle be combined to yield
evolution equations for the exchange coefficients of the form
K _ .

2 =8 2.4

where K = K,,'or K, and Sy again a source term. In local-equilibriuin models the time

2




derivative of X is aeglected, which gives §x = 0. In a model of Prandil-Kolmogorov type
Sy « - K + w JF(RY), where u, is the friction velocity, / a length scale of the large eddies
under neutral conditions, F a positive damping function representing the influence of
stratification (F(0) = 1 and dF/dRi < 0 for finite Ri), and Ri = (0B/0z)(8U/dz)2 the gradient
Richardson number (Ri = 0). Expressions that do take thie finite adjustment time of the
exchange coefficients in this mcdel into account therefore are

oK

T2 = -K_ +ulF,(Ri) 2.3)
o
oK

vt = -, + uIF(RD @.6)

where 1 is a time scale of the large eddies. Equations 2.5 and 2.0 ensure that the exchange
coeificients never become negative. The length scale { is not well known for stratified flows
sa that ysing (2.5) and (2.6), quantitatively correct resulis are not easily obtained.

Equation 2.6 is the counterpart of the expression proposed by BBDPU (equation 2.5 is
new). A first-order regular asymptotic expansion for 70K,/0¢t — 0 gives, when applied to
(2 .9).

~ 1[ F,Ri) - ©F, (Rz)_al‘_’] @.7)

where the prim2 refers to differen.’ation with respect to Ri. Equation 2.7 is equivalent o
equation (15) of BBDPU. However, the time-derivative term in (2.6) does not always remain
small for large wave nambers. BBDPU show that it is the behaviour at Lirge wave numbers
that determines the ill-posedness or well-posedness of initial-valie problems. Some difference
between the models therefore erists.

An alternative formulation of the eddy diffusivity would be to replace (2.6) with aa
expression also resulting from algebraic stress/flux turbulence models,

K, = K o, (Ri) (2.8)

where o, is the turbulent Prandtl number, which in free turbulence increases with Ri (e.g.,
Mizushina et al., 1978).

Introducing dimensionless varizbles accordingto U = U, B =B,B’, t = T¢', 1 = Tr",
K = uJK and z = hz', where the asterisk (Superscript) Genotes a «imensionless variable,
and T and h are constants, equations 2.5 and 2.6 become (the asterisks are dropped)

oK,
T a[ +K,, = F, @R 2.9)

Equations 2.1 20d 2.2, and the expression for Ri, romain unchanged by putting 7 = k/(u))
and U7 = B,h If it is assumed that © ~ 1/N}, whme N, is an overall buoyancy frequency
given by v, = By/h, the dimensioniess tme constant < will be of the order of (I/)/Ri 2.
Here Ri, = B,h/u? is an overall Richardson number.

3. L bil Lysis

The undisturbed velocity and buoyancy distributions are assumed to be time-independent and
linear functions of z. Perturbations are introduced according to

PO TS,
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U = U, + vy, [z + uz,)] (3.1)
B0 = B, + y,[z + Bz, 3.2
K =F,+i 3.3)
K, =Fy+k (3.9

where Uy, By, Y Vor Fouo = Fu(Rip) and F,; = F(Riy) are constants. Here Ri, = /1,2
Substituting trom (3.1) - (3.4) and linearizing, equations 2.1, 2.2 and 2.9 zive as

perturiation equations

o _p u ok, (3.5)

ERR R

b _ . 0% , Ok €
AL -6
ok . oo i 2b 8u]
—"+k =Ri FI4Z - 272 3.7
b R '{62 g
ok, . ob Ou
Tl vk RzaF.,’,{.aZ - 25 ER)
A harmonic solution to €3.5) - (2.8) is soughi by putting
u = u,exp(dt + ixz (3.9)
b = bexp(At + i) (3.10)

where x is a real wave number, A a possisiy complex frequency, and u, and b, are constants.
The solutinrs aie linearly stable for Red < 0, whereas ReA > O implies instability of the
solution.

The rase where A is complex with Red > 0 is not acceptable from a physical point of
view. Numerical calculations using the full set of equations in this case produced wave-like
solutions in which interfaces continied to tvavel up and down botween upper and lower
boundaries of the computatiorial domain. Such yesults are at variance with the experimental
evidence addresses in the Intraduction. Therefore, ouly linearly unstable solutions having ImA
== () can be physically realistic.

Substituting frum (3.9) and ¢3.10}, equations 3.5 - 3.8 yield a homogeneous, linear set of
equations. Equating the coefficient determinom to zero gives as z dispersion relation (tke
subscript 2 iz dropped)

T+ 1+ r(F, + FYIN + 2@+ Stk F A + kg = O (G.11)
whare

p=F, +F + RiF, - 2F)) 3-12)
g = F,F, + Ri(F,F, - 2F,F.) (.13)

Yor 1 = 0 eqnation 3.11 reduces to ai: expressicn derived by Kranenburg (1980). The
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stability of a solution given by (3.9) and (3.10) dejend:: on the signs of the coefficients p and
g. Equation 3.12 can be writien as

P (l ' %}F. - 2 - ST)RIFL (3.14)

where Rf is the flux Richardson number given by Bf = Ri K/K,,, which in the undisturbed
situation is equal to Ri F,/F,. For stable stratification it may be safely assumed that 5, <
2. Equation 3.14 then shows that a sufficient condition foi p to be positive is dRFGRE > -1,
which condition seems to be in agreement with cbservations (e.g., Mizushina et al., 1978).
Therefore, p is assumed to be positive herefn. Equation 3.11 then will yield unstabic
solutions, only if ¢ < 0, which condition o be writien as

é (R
m(‘i J <0 (3.15)
If ¢ < 0 instability occurs for all wave numbers k, and A is real. Condition 3.15 is more
restrictive than the condition dRf7dRi < 0 obtained for zero mean-velocity gradieat, see the
discussion by Ruddick et al. (1989), for example.

Equation 3.11 shows that for a puraly di{fusive model {x = C) the growth rate A is
proporiional to ¥?, thatis, A — oo for k & w if ¢ < €. I v > 0 the growth: rate remains fivte
for x —» oo,

o 4 (.15

¥m

BBDPU show that it is this difference in behaviour tor 1 = « that results in well-posed initial-
value problems for T > 0. In this sense the present model shows the sani 2 behaviowr as that
of BBDPU. Equation 3.16 also shiows thai for large wave number the lett -hand sidc terms in
{2.5) and (2.6) do not necessarily remain small.

As ar example consider the often vead damping functions

Fow__9%0 G117
" 0+ aR)”

N 1
& TRy 19

wheze m, n, o and f are positive constants and o, = o, (). The instability condition (3.15)
then becomes

nzlm+ 1 3.19

In the case of the equal sign an additional conditicn is 2Bm > a(@m -+ 1). If (3.19) is
satisfied, instbility will ensue beyond a certain vzlue of 12i. It is shown in Section 4 that such
an unboundeq instability intcrval has fa--reaching consaguences as to the character of the
solutiuns obtained.

Condition (3.19) iz quite restrictve. The well-known Munk-Anderson and Rossby-
Monutgumery relations, for exampie, do not satisfy it. Excluding a run with low Reynolds
number, the laboratory data of Mizusaina et al. {1578) can be represented fairly weil with m
= 0.5 0 0.7 and n = 2.5 to 3.0, which valies do sofisfy (3.19). However, instability, if it
occurs, teads to be only marginal.

The above analysis was repeated using (2.8) rather than (2.6} to model the eddy diffusivity.
In this case A was found to be slways complex when Red > 0. As siated before this
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alternative for step formation therefore is not physically realistic.

4. Numsidcal computations

Equadons 2.1, 2.2, 2.5 and 2.6 together with the damping functions given by (3.17) and
(3.18) were solved numerically for unsteady, stratified Couetic flow. The initial conditions
considered are

U0 = 2 = , - B2 CRY
B(z,05 = Riy{uz = (b, - 1)z7] @.2)

where Riy, is an overall Richardson number, x,, and g, are constants (0 < u, . <3/2), and the
computational domain is given by O < z s 1. Alternatively, the plane z = 0 is 2 plane of
antisymmeiry in a flow domain given by -1 £ z < 1. The boundary conditions are U(0,f) =
B(0,») =0, U(1,0 = 1 and B(1,r) = Ri,. The equations wex¢ solved using an =xplicit scheme
that is of second-order accuracy with respect to space and of first otder with respect to time.
No additional filtering was applied. The number of grid poixts, N, was chosen so as to obiain
convergence of the soluticns. For the results preseated hereir: N was equal to 200, which is
also the value uscc by BBDPU. The time step was 1/2N9 = 1.25 X 10°, To obtain
sufficient accuracy, tie time step should be much less than the time constant ©.

The results of ths computations showed that solutions were stable when the instability
condition ¢3.19) was not satisfied, and that solutions were initizlly unstabie when it was
satisfied in a substantial subdomain of the flow field. It was found, in the latter case, that in
a qualifative sense the sclutions behaved in the same way for a wide range of the various
coeifivients involved, even in the case where the shear rate was kept consiznt (this case is
obtained by puiting u, = 1 and m = 0, which gives oU(z,£)/0z = 1). In some part of the
vertical a number of small steps in the buoyancy distribution develeped sooner or later. The
associated interfaces were stationary, but in the layers the buvyancy cither increased or
decreased. Ac a result layers always merged after some time to form larger steps, while the
merging process continued, The steps in the buoyancy distributions were very distinct,
whereas those in the velocity distributions were more gradual. The gradient Richardson
numbers in the layers tended to zere, but those in the interfaces were large (usuclly > 1).
As already noted by BBDPU the formation and merging of steps proceeded more slowly when
¢ was increased. In ail cases having n > 2m + 1 a steady statc was eventually reached, in
which only twe layers and one interface remained.

For the resuits shown in figure 1, the coefficients in the damping functions given by (3.17)
aud (3.18) were estimated from the measurements of Mizushina et al. (1978), Thus the values
m = 0.5, ¢ = 10 (in agreement with the corresponding Munk-Anderson relation) and n =
B = 3 were selected, The values of m and n wers deliberately chosen 5o as t satisfy the
instability condition (3.19). The neutral turbulent Prandtl number was equated 30 €.7. The
resulting maximal value of £ is about G.13 ai Bi ~ 0.28. The critical vaiue of Ri beyond
which solutions become linearly unstable is about 0.53.

Figure 1 shows typical computational resuiis. The four-layer structure al s = 2 has
developed from the merging of smaller steps. The process of merging is seen to go on: first
the upmost intecface disappears, next the lowest one, and in the long run the central interface
is the only one that survives. The way the interfaces vanish is in agreement with the
observations of Ruddick ¢t al. (1989). A direct comparison with Moore & Long's (1971) or
Narimousa & Femnando's (1987) experiments is hampered by the large influence of sidewall
friction in these 2xperiments. Including sidewall friction in the present computationzl model
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FIGURE 1. Velocity aud buoyaacy distributions computed using (3.17) aud (3.18) fox im = 0.5, o = 10, n =
Oom 3, By o=y, 7m= 50 x 10% u, = 1 and g, = 1.5. Note the offsets. The solution at ¢+ = 16 almost
coincides with the final sieady-state solution.
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showed that a two-layer flow and a diffused interface at mid-depth developed in the stable

case whese no steps are formed. Such flow structure was also observed by Moore & Long
and Narimousa & Fernando. ‘These experiments therefore do not provide evidence for the
instability mechanism considered. A layered structure as shown in figure 1 was also obtained,
when sidewall friction was included in the linearly unstable case. Therefore, the three-layer
structure reported by Long (1972) seems to be in accord with the present results (the
antisymmetric caso with -1 <z < 1).

The results discussed so far would lead to the paradoxical conclusion that eventually any
buvyancy distribution would develop, in the lincarly unstable case, into a layered structure
with only one or two interfaces. Qbviously, this result is at complete variance with empirical
tvidence. The expianation for the continual merging of layers is that, if n > 2m + 1,
instability will occur for Ri up to infinity. The interfaces then never stabilize. Merging was
fourd to cease at a certain siage, when instability was allowed in a finite interval of Ri values
only. Small changes in the damping functions are sufficient to achieve this. An example is
F, given by (3.17) in which m = 1 and « == 5, and

2 - Ry ]
1+ 4(1 - Ry

F, = |Ri - 04 + [1.24Ri(1 + SR “.3)

These functions still agree fairly well with Mizughina et al.’s (1978) experimental results (the
facier 1.24 ensures that F, — 1 for Ri — 0). With these functions the maximal flux Richardson
number is about 0.20 at Ri » 0.57. The instability condition (3.15) is satisfied for 0.757 <
Ri < 1.243. As an alternaiive o obiain insiability on a finite Ri - intervai, moiecular effects
could be invoked (Hearn, 1988).

A result of computations using the modified damping functic.:s is shown in figure 2. This
figure shows a stable layer for z larger than about 0.54. However, numerous small steps are
formed below this level. As opposed to what is shown in figure 1, the merging of steps comes
to a halt and a steady-state finestructure develops. Similar results were obtained for other
values of the various parameters involved.

Cr e - e e




e

¥« O 05 1224816 O 05 124 816 o

[
] :
x z
G 0.3
A 1 1
o] o 1 OB

1 0.

1
T
1

FIGURE 2. Velocity and buoyaucy distributions cowputed using (3.17) and (4.3) form = 1, « = 5, Ri}, =
I, t » 5.0 X 1C?, p_ = 1 and », = 1.5. Tho plot on the right shows enlarged parts of two buoyaacy
distributions.

5. Discussion

The gradient-transport model in conjunction with the finite adjustment time of exchange
coefficients as proposed by BBDPU is able to mimic the formation, in shear flow, of small-
scale constant-density layers, which from a physical point of view would be a consequence
of the overturning of internal waves. However, the agreement may be of a qualitative naturc
only, because no physical wave-breaking mechanism is explicitly inciuded. In addition some
rather restrictive conditions must be satisfied to obtain the desired model behaviour. These
conditions seem to make the model a bit artificial. However, it is not inconsistent with
empirical evidence. The buvyancy distributions shown in figure 2, correspond to those of a
mixed upper layer overlying a thermocline and a stratified lower layer in which finestructure
develops. It remains to be seen whether such results are satisfactory in a quantitative sensc.
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Absiract

We present results of a novel set of experiments which investigate the structure of turbulent
stratified and rotating flows. The turbulence is generated by an array of sources and sinks
located around the boundary of a tank. The tank contains a linear stratification and the
sources and sinks are directed horizontally and are located in the same horizontal plane.
Their action is to extract fluid and to re-inject it with horizontal momentur but with a
minimum of mixing. In some of the experiments the tark is rotated at a constant angular
velocity about a vertical axis. Small, neutrally buoyant particles which follow the flow are
placed in the fluid and recorded on video. The video images are automatically digitised and
the particles located on each video frame and from this information various characteristics
of the flow field are determined. Up to 4095 particles may be tracked at any one time giving
high spatial resolution. In non-rotating flows the form of the motion is determined by two
parameters: F = V/Nd, where V is the orifice velocity of the jets of diameter d and N is the
buoyancy frequency of the stratification, and the Reynolds number Re =Vd/v, where v is
the kinematic viscosity of the fluid. At high values of F vertical motions occur and
turbulent mixing takes place. A mixed layer is produced at the level of the sources and
sinks, and its depth increases with time by entrainment of fluid above and below. Under
these flow conditions the scale of the motions observed are deiermined by the forcing scale.
At low values of the forcing parameter F, the motion behaves in a qualitatively different
way with transfer of energy to the largest scale available within the experimental tank. This
transfer of energy occurs because the vertical motions are inhibited and the flow is
approximately two-dimensional. As a result the 'inverse energy cascade’ causes the energy
to accumulate at large scale. The dynamics of this large scale circulation particularly the
way in which turbulent eddies are excluded from its centre, and decay of the circulation
when the forcing is removed are investigaied. In the rotating case the effect of rotation is to
introduce a further lengthscale, the Rossby deformation scale R = Nh/f, where A is the
depth of the fluid and f is the Coriolis parameter. At low values of the forcing parameter
the flow is again approximately horizontal with no appreciable vertical motion. Unlike the
non-rolating case, however, energy does not accumulate 2t the largest scale as a result of
baroclinic instability at the Rossby deformation scale. As a consequence eddies are
continually regenerated at small scales and they interact with each other in a variety of
ways. Merging, splitting by shear flow and interactions of vortex pairs have been observed
in this flow. Ore result of these interactions is the eventual predominance of anticyclones.
This bias appears to result from the observation that cyclones merge more readily than
anticyclones, and may explain why many sub-mesoscale oceanic vortices are anticyclonic.
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MEASUREMENTS OF A TURBULENT PATCH IN A ROTATING, LINEARLY
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ABSTRACT .

A series of experiments is described in which an oscillating grid, positioned at one end
and mid-depth of a rotating channel, filied initially with a linearly-stratified fluid, produces
a turbulent, mixed patch about itself. As the patch develops, it spreads down the channel.
Measurements are made of vertical density profiles at the grid both during production of
turbulence and after the grid is turned off, dwing its decay. Patch size and structure, Thorpe
scales, mixedness parameters and available potential energy are deduced from these
measurements, and the effects of varying the rotation rate, Q, arabient buoyancy frequency,
N,, and grid action K (Long, 1978), are investigated. During the growth phase, several
previous results are confirmed and extended (Davies er al, 1991 - DFBS herein; De Silva and
Fernando, 1992 - DF herein). During the decay phase, Thorpe scales are found to persist to
N,t~10 after turbulent production ceases, except in the case of no rotation, where they decay
immediately the grid is turned off. The potential encrgy of the flow, conversely, decays
rapidly in all cases, suggesting that mixing rather than overturning is an important mechanism
in the early stages of decay in rotating twrbulence. This behaviour is also suggestive of the
fossil turbulence model of turbulent decay (e.g. Gibson, 1980).

INTRODUCTION

This paper presents a study of some aspects of the growth and decay of turbulence in
4 rotating, lincarly-stratified fluid. In one sence it is a continuation of work previously carried
out previously on the same apparatus (DFBS). These autliors measured the vertical extent of
mixed patches formed by the vertical oscillation of a horizontal grid in an initially-undisturbed
stratified fluid in solid-body rotation. Here, details of the internal structure of these patches
theraselves are deduced, by using density probes with faster response times than those used
previously. In ail cases, the measurements of the patch structures were made within the
source region above and below the oscillating grid. The results are also compared with those
of DF. These authors measured many of the same parameters in a non-rotating experiment
in which the fluid was contained within g tank with vertical walls very close to the grid on
all four sides.

MEASUREMENTS

The measurernents made here were concerned with length scales and other parameters
relevant to the growth of the mixed patch produced by the oscillating grid. The length scales
measured were the vertical extent of both the mixed and turbulent patches (the distinction is
explained below) and the r.m.s and maximum Thorpe scales, L; and L,,,, (Thorpe, 1977).
The mixedness parameter, defined by DF as ¥ = 1 - (M/N,)’, where N, is the ambient
buoyancy frequency and N is that of the mixed patch was used to measure the homogeneity
of the patch in relation to the ambient density gradient. Finally, the available potential energy
function (APEF) was also measured. This is dafined (Dillon, 1984) as
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APEF = E- %7 [p(z) - pr(2)] 2, Y

Py i=1

where z is measured vertically upwards frem the centre of the grid oscillation range, g is the
acceleration due to gravity, n is the number of data points, p, is the mean density, p(z) is the
actual density at z and py is the density at z in the Thorpe-ordered profiie (Thorpe, 1977).
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Figure 1 Schematic diagram of the rotating tank awangement used in the turbulent patch
experiments

APPARATUS AND PROCEDURE

A rectilinear, perspex channel (2.1 m long x 0.46 m wide x 0.31 m deep) was fitted
with a rigid lid to form an enclosed space ~0.24 m deep into which the stratified fluid was
placed (Fig 1). At one end of the channel a grid suspended at an intermediate depth could
be oscillated vertically with an amplitude of ~1.5 cm, at a variable rate (5 - 35 rad/s). The
grid consisted of a 6x4 array of square elements made up of perspex limbs separated by a
mesh width of 6 cm in either direction and extended across the whole width of the tank with
a spacing between it and the sidewalls of approximately 3 mm.

Density profiles through the turbulent patch at the grid were measured by waversing
the patch vertically with a micro-conductivity probe (Head, 1983). The probe was mounted
on the tank in the position shown in Figure 1 and traversed the entire depth of the fluid in
a little under 2 seconds, at a speed of ~15 cm/s.

The tank was filled and its initial buoyancy frequency measured. The rotation rate of
the channel was then gradually increased from rest to within £1% of the operator-specified
value. Once the required rotation rate had been reached, the system was left to rotate until
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the fluid had reached a state of solid-body rotation.
The rotaton rate (L), imitial buoyancy frequency (N,) and grid oscilladon rate
(described herein in terms of the grid action, K) were varied between runs. A standard
combination of values was adopted, namely Q=0.16 rad s, ¥=1.0 rad s and K = 6.0 cm’s ™.
Only one parameter at a time was varied from these standacd values. Experiments using this
set of parameters are referred to as “standard runs”. Other than this set, the following values
were used: Q = 0.0, 0.08, 0.32 rad sy N, = 0.5, 1.25 rad s K = 3.0, 9.0 cm’*. Those
experiments in which Q was varied from its "standard value" are referred to as "Q-varying
runs”. Np-varying runs and K-varying runs are defined in a similar fashion,
The grid was oscillated in all .
cases for a non-diraensional time Best fit u,y
Nyt=200. This was chosen to be long
enough for a reasonable number of Uopar
data points to be recorded, but short y_Interface
enough to ensure that the intrusive Profile

flow, generated at the grid and forced ponar Quier
by the Coriolis force to flow as - - Size Size

Depth —

boundary cusrent, did not have time to
circulate the entire channel and return
N Lower
to the mixed patch. Interface
Profiles were measured at /

intervals of Ny=20, w0 allow the .

disturbances caused by the traverse of Density —
the probe to die away. In order to
obtain data of a higher temporal
resolution than this, three identical
experiments were carried out for each
run: in the first of these, the first
traverse during the growth (decay) phase was recorded at the moment the grid was turned on

(off); in the second 4 five second delay was incorporated, and in the third a ten second delay.
A total of 8 standard runs were carried out: two each with 0, 5, 10 and 15 second delays.

Figure 2 Definidons of the mixed-patch and
interface sizes used herein, as deduced from the
Thorpe ordered profile

RESULTS

Three different definitions of the patch size were used: the rurbulent patch size, L,
is calculated, following DF, as the region in which all Thorpe displaceraents greater than 5%
of the maximum Thorpe displacement are found. This definition was found to cause some
problems, especially duting the decay phase, when it was somewhat misleading. Therefore,
a mixed patch was measured from the Thorpe ordered profile using the method illustrated in
Fipure 2. A straight line was fitted to the profile. Since the mixed patch is always
approximately symmetrical, this should pass through the ambient density gradient The
maximuin positive and negative deviations of the Thorpe ordered profile from this straight
line are found, and the distance between the depths of these two points is defined as the
“inner mixed patch size", Ly,. The Thorpe ordered profile is then tracked from the most
negative (positive) deviation from the straight line towards the nearest end of the profile until
the first point above (below) the straight line is found. The distance between the depths of
these two points is defined as the “outer mixed patch size®, Ly, (this is the patch size used
by DFBS). (Lp - Lyy) is defined as the total interface size, I,. Mixedness’ of these two
patches were calculated, and are denoted as y; ("inner mixedness") and y, (“outer mixedness”)
respectively.




S T

Growth Phase Measurements

Figure 3 illustrates the
relaidonship between the three
patch sizes defined above. The
data shown are from the
standard runs. The growth can
be seen to occur in two phases:
in the first (Ny < 15), growth is
rapid since the effects of
buoyancy are not significant.
Once buoyancy does take cifect,
the growth becomes much
slower. Note that for Nyt S 5,
Lor > Lpo, but that after this
period, Ly > Lyy > Ly in
general. Ly, grows at a
significantly more rapid rate
than the other two scales. All
the patch size data for varying
Q, N, and K are collapsed by
scaling with (K/Np)*?, as in DF
and DFBS.

Following DF, the ratio
LJL, was plotted against
mixedness. Most of the dat
presented by DF are for y > 0.9,
i.e. during what they call the
“fully rnixed" stage. Here, the
data here are for ¥ < 0.9
(Figwe 4), where v is the
mixedness of the turbulent
patch, as in DF. No discemable
variation due to either rotation,
buoyancy frequency or grid
oscillation rate is apparent.
Most of the data are close to the
L/Ly=0.1 line, in good
agreement with the (few) plots
of DF in this range. Above vy~
0.55, however, there is evidence

6 20 40 0 80 100 120 140 160 180
Nyt
Figure 3 Relationship between the outer and inner mixed
patch sizes (upper and lower solid lines respectively) and
the wrbulent pawch size (asterisks) during the phase of
turbulent producton. Data are from the "standard runs®
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Figure 4 Graphs showing the (lack of) variation of Ly/Ly;

with the mixedness, v. Data from all runs are included

of slightly higher values, approaching DF’s valuc of 0.27 for ¥ 2 0.9. The relationship
between Ly and Ly, for the growth phase is clearly unaffected by rotation: from these data,
2L Ly = 0.35 - a value very close to DF’s value of 0.365.

Mixedaess is plotted, once again following DF, against K#/Ly,?, for all the K-varying
rans in Figure 5, using the mixedness and paich size of the turbulent parch. Nots that, as
observed by DF, the values of ¥ for the lowest K-valus runs are consistently higher than those

for higher K-value runs.
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Decay Phase Mcasureraents 1003 - q."-'ET - =
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patch sizes during the decay i - Wy ug @°

phase is shown in Figure 6. . e -

Both Ly, and L show smal =

fluctuations only, the former 7 %193
decreasing significantly and the 3
latter remaining alraost constant. 1
Ly, on the other hand, 1 =
fluctuates markedly and 1
becomes smaller than L, on a -
timescale of O(1 s). Ten T T e T T T e
Figure 6 also illustrates KvL,?
the growth of the interfacial pyoyre 5y vy KiLy,? for the K-varying runs. Solid boxes

region during the decay phase. g 3 omagl; clear boxes - K = 6 cm?s™; asterisks - K =
The effects of vaying Q, Ny g 201 ¢

and X on the total interface size,

Iy, were measured. The data

from the K and N -varying runs were collapsed in ge.eral by scaling the interface size by
(KIN))"? and the time by 1/N,. Results from the Q-varying cases show that an increased
rowtion rate causes a monotenic increase in the rate of growth of L/(K/N)"* during the decay
phase.

The mixedness puameter, v, was measured for the inner and outer mixed patches in
every run. Almost all runy had indistinguishable v,'s, which decayed very gradually from
~0.3 at Nyt =0 to ~0.2 by the end of the measurement period; the only exception was in the
case of no rotation, which decays faster than the rotational cases, especially after Nyt~S0.

In the case of 1y, most of 1a.a
the runs show a very gradual 140 M —_—J
X Jr— »
decrease from -0.9 to ~0.85 [\r"l B
during the measurement period. 12.07

The data for the Q = 0 runs, 8§ 1o

ot
however, decrease nowbly more ‘/L/“_‘.J‘\/\\N
rapidly after N—20. _&lr 8.0 N ~J
The immediate sharp 604, - Mo W
-4

diop of APEF once grid 5

oscillation ceases is clearly 407 -

illustrated in Figure 7. The data 2.0 L T~ "

are from the standard runs and . oo -

have been normalized by the SO 20 3 4 s e 70 1o
mean value at Nyt = 0. After Nyt

Nyt—20, the data are found only
in the region between O and
0.05 - these can be taken to
represent values due to neise in
the probe, which becomes
prominent because of the very
small density gradient in the mixed paich. Data from other runs show a very similar trend.
It is noted that the data at Nyr=5 and 10 increase with increasing rotation rate, suggesting that

Figure 6 Relationship between the outer and inner patch
sizes (upper and lower solid lines respectively) and the
uubulent patch size {asterisks) during the turbulent decay
phase
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APEF decays more slowly in fasier rotating wedia. No dependence of APEF on N, and K

is observed.

A lincar plot of Li/L,(Net = 0) against Ny for data from the standard runs is shown
in Figure 8, for comparison with the corresponding plot of APEF decay in Figure 7. Unlike
the APEF, the Thorpe scale appears to be sustained at 280% of its initial value up to Ny~10.
It then decays rapidly until Ny—25, after which time, it displays consistently low values. Data
fram other runs show this scme persistence, except for the case of no rotation. The data for
Lygax Show very much the same trends as the Ly data, suggesting that the spectrum of Thorpe
scales vemains relatively constant throughnut the decay phase.

DISCUSSION
Growth phase obscrvations

The initial period of fast
growth undergone by the patch
appears to extend to Nyt ~ 15,
both in these experiments and
those of DFBS. This is
significantly longer than the Ny
~ 4 reported by DF. This is
assumed to be due to the
presence of an outflowing
intrusion, not presznt in DF’s
fulily constrained configuration,
which retards the growth of the
patck to the Ozmidov scale,
whexe it is-arrested by buoyancy
forces. This would not,
however, affect the omset of
mixing. Note that the patch
size measured by DFBS is
equivalent to L, here, but that
those measured by DF are L,
and those measured by visual
methods, sreir as shadowgraphs
are likely to be Ly since this is
defined by boundaries at the
points of maximum &*p/dZ and
it is variations in this parameter
that cause the light and dark
regions to appear in
shadowgraphs. The definitons
given here provide an objective
and consistent frarnework within
which these measurements can
be comapared.

The growth of the patch
size is shown to be unaffected
by rotation and to be well
scaled foi buoyancy frequency
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Figure 7 Linear plot of the decay of the available potential
energy function (APEF) during the turbulent decay phase.
The data are nonoalized mean values for each time at
which piofiles were recorded during the standard runs
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Figure 8 Linear plot of the decay of L,. The data are
derived as in Figure 7. Note the presence of values 20.8
up to Nyt--10 - a feature absent from Figure 7
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and grid oscillation frequency variation by (K/Np)'?, in good agreement with DFBS. The
agreement between the ratio Ly/Ly,,. found here and that reported by DF is evidence of the
lack of effect of varying £, N, or K on the behaviour of the turbulent overtums inn the ranges
of those puameters used here. Comparison of the constancy of the ratio Li/L,, for ¥ < 0.55
found here with the resuits of DF suggests that L/Z; only depends on ¥ in the range 0.55
<7< 09. '

The plot of y against K¥/L,* (Figure 5) shows that vajues of y are consistently higher
for the X =3 cm?s! case than for the other cases. This is consistent with the results of DF,
who varied X by varying the solidity of their grid, In this case, however, the same giid is
used in all cases and it is the oscillation frequency that is used to vary K. This suggests that
an increase in mixedness is due to & decrease in K rather than any individual factor that
affects it. If K can be taken to represent the input of energy by the grid, then this is
consistent with the reasoning that at low K there is less energy to fuel entrainment
racchanisms at the interface, leading to a lack of unmixed inflow into the paich, so that the
mixed patch becemes well-mixed more rapidly. As the patch becomes more fully-mixed,
more energy becomes available to fuel entrainment. Thus entrainraent and mixing would be
expected 10 occur ruore episodically at low-values of X and more continuously at high values.
Clearly, more data for a range of K-values are needed to test this supposition.

Decay phase observations

Qunee the grid has been tumed off, comparsons with the work of Dillon (1984),
Crawford (1986) and many others shows that the velocity scales decay within the range 0 <
Nt « 3. Ro will decrease rapidly, therefore, and the presence of rotation can be expected to
become significant during the decay phase. These results show this to be the case, in that the
pach in the non-rotating case behaves differently from those in the rotating cases: in the
former case, inmediately following the cessation of turbulent production, erosion of the patch
takes place across the boundary between the interfacial region and the inner mixed patch,
causing a growth in interface size. Once this sharp boundary has been erodsd somewhat (at
Nt ~ 25), restratification takes place, spreading from the inner patch to the interfacial region
at Nyt~50. Fhe behaviour of the patch in the rotating cases appears to be identical with that
seen in the first stage of the non-rotational case, namely the erosion of the inner mixed patch,
only at a slower rate, iroplying that rotation retards the restratification process.

The preservative effect of rotation is also apparent in the data conceming the effect
of rotation on the APEF and Thorpe scale decay. In the forraer, the evidence sugpests a
decrease in the decay rate of APEF with increasing Q. Note that this decay occurs over
several buoyancy periods, and is certainly an order of magnitude slower than that observed
by Dillon, Crawford and many others for turbulent kinetic energy decay. That the two forms
of energy decay at very different rates is not surprising, given that differsnt mechanisms are
respensible: the decay kinetic energy is due to viscous dissipation, whereas that of the APEF
is caused by saline diffusion and buoyancy-induced motions, Coraparison of the results
obtained here for APEF and L, decay show that, initisily, overtumings persist whilst potential
energy decreases. Referring to Equation (1), the persistence of L, corresponds to z remaining
relatively constant. Since g/np, is constant, the initial decrease of APEF can only be brought
about by a decrease in p(z) - p.(z), i.e. by mixing, rather than buoyancy-induced motions,

The persistence of Thorpe scales in rotating runs, when corapared with their immediate
decay in the non-rotating case is also evidence that rotation tends to preserve the
characteristics of the density profile once turbulent production has ceased. This persistence
after turbulent production has ceased for timescales an order of magnitude longer than the
often reported decay e-folding times for turbulent kinetic energy is suggestive of the definition
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of fossil turbulence (e.g. Gibson, 1980). That background rotation appears to bave the effect
of enhancing the preservation of vertical density fluctuations suggests that rotation exacerbates
fossilization.

CONCLUSIONS
(i) Objective definitions have been given for mixed patct and interface sizes derived from
Thorpe-ordered vertical density profiles. These have been found to be useful in determining
the development of the patch structure, during both growth and decay phases.
(ii) During the growth phase, Ly/L, is found to be 2 function of the mixedness, v, only in the
range 0.55 < ¢y < 0.9. Also during this phase, low values of the grid action, X, are deduced
to cause consistently higher values of -y
(iii) During the decay phase, rotation is found to retard the restratification of the mixed patch.
Diffusive mixing, rather than buoyancy-induced rantions, are observed to dominate the early
stages of the decay of the internal structvre of the paich, A persistence of Thorpe scales is
observed at time scales an order of magnitude greater than that reported elsewhere for the
decay of turbulent kinetic energy. This is consistent with the concept of fossil turbulence.
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Abstract

Computations of the buoyantiy unstable Ekman layer are performed
at low Reynolds number. f,he results are obtained by directly solving
the three-dimensiovnal time-depeadent Navier-Stokes equations with the
Boussinesq buoyarcy approximation, resolving all relevant scales of mo-
tion (no turbulence closure is needed). The flow is copped by a stable
temperature inversion and heated from below at a rate that produces
an inversion-height to Obukhov-iength ratio —7 /L, = 32. Temperature
and velocity variance profiles are found to agree well with those from an
earlr=t vigorouely heated vnder-resclved ceraputation at higher Reynolds
number, and with | sardorfl & Willis’ [1] experimental data. Sigaificant
helicity is found in the layer, and helical convection patterns of the scale
of the inversion height are onserved.

1. IIITRODUCTION

Due to the very large Revnolds rumbers found in the atmowphere
[2], most nureerical studies of the plaretary boundary layer (FBL) utilize
large eddy simulation (LES) (see [3]-19], for example). The price cne pays
for the ability to consides realistic Keyaolds numbers is the uncertainty
introduced by the LES’s sub-grid scale (SGS) parameterization. In this
(and previous [10}-[12]) work, the alternative sirategy of direct numerical
simulation (DNS> is nised: turbuient fields are obtained by numerically
solving the three-cdimensional iine-dependent Navier-Stokes equations,
resolving all of the relevant scales of motion, so that no SGS parameteri-
zation is needed. While only very lew Reyrolds number turbulence may
be computed, the results are frec from modeling errors, and can provide a
complement to infermation found in the LES studies. The DNS data can
also %e used as a reference for Reynolds averaged turbulence closures, to
test the accuracy (and importance) of SGS models, and ‘n some instances
([10]-[12]) be directly applied to high-Reynolds-number PBL flows.
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The focus here is on an idealization of the convective planetary bound-
ary layer (CBL), tke buoyantly unstable turbulent Ekman layer. (Neu-
trally and stably stratified resuits are presented in [10] end [11}; a sim-
ilar CBL study was recently made by Bohnert [13].) The convective
case has the numerical advantage that the largest scales are the most
energetic, which diminishes the significance of SGS errors. This was re-
cently demonsirated to the present authors, when in the course of a CBL
study concerned with roll cells in the mildly heated regime [12] (with
—2z/L, = 2), it was found that results from a vigorously heated reference
run (‘Case CA,” with —z/L, = 26) agreed zeasonably well with atmo-
spheric and LES data, despite that fact that the small-scale flow was not
fully resolved. The objective of the present work is to further investigate
the importance and nature of small-scales motions in a vigorously heated
CBL, using well-resoived DNS fields. The latter are obtained by increas-
ing the number of collocation points, compared 1o the earlier Case CA
values, and decrzasing the Reynolds number, allowing the full range of
scales of both velocity and vorticity to be captured (the smali-scale dy-
namics [14] of the stable inversion above the CBL cannot be represeated;
cf. [9] and [12]). The fact that both valocity and vorticity (and therefore
helicity) are accurately resolved is noteworthy, since it has beer observed
that helical motions can be especially significant in convective flows [18],
as we shall illustiate below.

2. APPROACH

Numerical soluticns of the pressure-driven turbulent boundary layer
over a heated smooth flat surface are geuerated using the Boussinesq
buoyancy approximation. The viscous flow is exposed to a vertical grav-
ity field and steady system rotation about an axis normal to the sur-
face. At the surface, isothermal no-slip boundary conditions are as-
sumed; an isothermal geostrophic balance is prescribed in the freestream.
The nondimensional parameters for this fiow include a Reynolds number
Re = GD/v = G/(v§/2)/? (where G is the geostrophic wind speed, f the
Coriclis parameter, D the laminar Tkman layer depth, D = (2v//f)1/2,
and v the kinematic viscosity); the Prandt! number, Pr = v/ (x is the
kinematic thermal diffusivity); the ‘shape factors’ of the initial tempera-
ture piofile {which define the inversion height and surface heat dux - see
[12]); and (since the flow is not statistically stationary) the nondimen-
sional time, .

The governing eguations [12] are solved using the spectral method of
Spalart et el [16]. Spatial variations are represented by Fourier series in
planes parallel o the surface, and in the vertical direction by expansions
in Jacobi pelynomials in the mapped coordinate ( = exp{—z/Z), where &
is the mapping length scale; the time-advance scheme is a mixed implicit-
explicit second order algorithmz. See {16] or [12] for details.




TABLE 1: Run parameters.

Case Re Pr N, N, L./z Z/x N, Azt (Az/n),

CA 400 07 96 45 6.2 077 28 130 6.7
CC 200 0.7 192 90 55 068 60 1.9 1.7

Two cases, denoted CA and CB (C for ‘convective’) have been pre-
viously discussud ia [12] (respectively, the vigorously and mildly heated
flows mentioned above). Here we iutroduce another convection-dominated
simulation, denoted Case CC. Its parameters differ from CA’s in the nu-
merical resolution, Reynclds number and initial history. Whereas the
earlier runs were begun by instantaneously superimposing an uustable
surface heat flux and stable capping inversion upon a fully developed (sta-
tistically stationary) unstratified turbulent field and advancing in time,
tbe present simulation is the result of iinposing the same unstable temper
ature field (and small velocity pcrturbations% upon the laminar Ekman
layer solution at the same Reynolds number (Re = 400) using twice the
number of collocation points in each coordinate direction. After a time
of t = 0.11/f, during which the fine-grid flow reached a quasi-equilibrivm
state [12], the viscosity was increased by a factor of 4 so that the laminar
depth D was doubled, and both the Reynolds nurnber and the accelera-
tion of gravity (since the Froude number gD/G? was kept equal to une)
were haived. The resultingz Re = 200 histories of the ‘surface Richardson
number’ (g/7To)T/(G/D)? (i.e. surface heat flux) and volume-integrated
turbulent kinetic energy F = j [§°(uju})dz are shown in Figure 1. (In
the above, I'y = (dT'/dz),=¢ is the surface lapse rate, Ty the freestream
reference temperature at z — oo, and the angle brackets denote an aver-
age over horizontal pla.nes.) Towards the end of the run the turbulence is
deemed to be in quasi-equilibrium with the slowing changing mean field.
The symbols in Figure 1 indicate the beginning and end of the 0.04/f
time period from which 24 fields were averaged to obtain Case CC mean
quantities (denoted by overbars); the resulting mean temperature and
velocity profiles are shown in Figure 2.

3. RESULTS

A summary of the Case CA and CC run parameters is given in Table 1.
Included are the number of streamwise and spanwise (with respect to the
geostrophic wind) and vertical collocation points, N; = N, and N;, the
horizontal domain size, L, = L, and the vertical-napping length scale,
Z. Note that the lateral grid spacing decreases from Azt = Ay* =
u,Az/v = 13 to 2 in the fine-resolution run (u. is the surface friction
velocity), while the new vertical resolution (which places the first 10 grid
points below z* = 0.3) increases the number of collocation points between
the surface and the inversion, IV, from 28 to 60, and decreases the ratio of
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Ficure 1. History of (a) surface heat flux and (b) volume-integrated turbulent kinetic energy
for Case CC: &, beginning and end of averaging period.
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FiGure 2. Time-averaged profiles of (@) mean temperature and (b) mean velocity for Case CC.

the vertical grid spacing to the Kolmogorov length scale at the inversion

from (Az/n); = 7 to 2 (n = (#3/€)/%, and ¢ is the dissipation rate of
fuful). Given that the lateral domain size remains greater than 5 times

the inversion height, this improvement suggests that both the largest and
smallest spatial scales are accurately captured. More compelling evidence
of the numerical fidelity of the new results is provided in Figure 3, where
one-dimensional energy and enstrophy spectra at various elevations from
runs CA and CC are presented. ’lphe e = 200 spectra show the effect
of low Reynolds number in the small separation between the energy and
enstrophy peaks. They also show that the full range of horizontal ve{ocity
and vorticity variations is ¢. >tured in the high-resolution case. Since even
at the inversion the vertical grid spacing is of the order of the Kolmogorov
length scale, vertical gradients are expected to be accurately represented,
especially near the surface. (At the inversion, however, any small-scale
dynamics that are not precluded by the low Reynolds number cannot be
fully supported.)

Despite having significant energy in the highest resolved wavenumbers
(Figure 3(a),(d)), second-order statistics from Case CA! are not vastly
different from the fully resolved (or experimental) data. As illustrated in
Figure 4, both cases produce realistic heat flux profiles (note the smaller

1 All Case CA data are from the ‘State CA1’ field at ¢f = 0.15 [12].
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FIGURE 3. One-dimensional streamwise (k:) and spanwise (k) turbulent kinetic energy and
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data.



TABLE 2: Global results.

Case u,/G w,/w, B(deg) 6§/D —L./6§ —z/L, w./zf

A90 0.0652 - 28,5 13.0 oo - -
CA 0.1195 0.249 11.2 239 0.0067 26.45 22.50
CC 0.1362 0.235 7.1 13.6 0.0056 31.69 24.18

near-surface maximum and larger interfacial thickness in Case CC, con-
sistent with lower Re). The temperature and velocity fluctuation profiles
from both runs are also reasonable, agreeing fairly well with Deardorff &
Willis’ [1] convection tank results.

Global mean quantities are tabulated in Table 2. The inversion height,
z;, the surface friction velocity, u,, the angle between the surface shear
stress and geostrophic wind, 8, the turbulent Ekman depth, § = u./f,

the convection velocity w. = (9Qu%/Teo)/® (where Qo is the surface
heat flux), and the Obukhov length, L, = —u3Tw/gK Q) (K is the von
Kérmén constant) are given. Values from a DNS study of the unstratified
Re = 400 Ekman layer (Case AS0 of [10]) are included for comparison.

The convection-dominated nature of the two heated cases is indicated
by the relatively large (compared to the unstratified values) u,, w, and
—2zi/L. (and small 3); Case CC is slightly more vigorous. For both runs
the large rotation-to-convection timescale ratio, w,/z;f, implies that the
large convective eddies are relatively unaffected by system rotation.

Another type of ‘rotational effect’ — that involving rotation of the
convection patterns themselves — appears to be more significant: the
alignment between verticity and velocity tends to be greater than that
found in non-convective flows [17]. This is illustrated by the probability
density function (PDF') of the relative helicity density A = u - w/|u||w|
g[15],[17],[18]) at z/z = 0.2 and 0.5 shown in Figure 5, for the Case CC

ow at tf = 0.17. The vorticity-velocity alignmeunt is less pronounced at

other elevations; as z — 2; it becomes more random, and near the surface
u and w are most often at right angles (cf. [17]). The PDF of relative
fluctuation helicity density A’ = u' + w'/|u'||w'| (not shown) indicates a
slight preference at z = 0.2z for «' and w’ to align, but not to the extent
that the total fields do. At 2z = 0.5z, however, the PDF’s of h and A’
are fairly similar, which suggests (since the mean vertical velocity and
vorticity are both zero) that most of the helical motions in the core of
the mixed layer are associated with convective motions. The contours of
vertical velocity w and vertical helicity ww, presented in Figure 6 reveal
that the helical motions are almost exclusiveﬁy located in the convective
updrafts. This is also apparent in the 2z = 0.22; joint vertical velocity-
vorticity PDF, Figure 7, in that large w, (of both signs) is correlated with
large positive w. As the iso-surface plot of vertical helicity in Figure 8
illustrates, the helical convection patterns extend through the depth of
the mixed layer.
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Fiure 7. Contours of joint PDF of verti-
cal velocity and vertical vorticity, P(w,w,), at
2/z = 0.2 for Case CC at ¢f = 0.17, weighted
by (w./(G/D))? (contour interval 0.05).
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Figure 6. Vertical helicity exirema su-
perimposted upon vertical velocity contours
at (a) z/zi = 0.5 and (b) z/z = 0.2
for Case CC at tf=0.17: , w/G@ 2
0 (contour interval 0.3); solid regions,
wwy > 0.05(ww;)may; shaded regions, ww, <
0.05(ww; )min; (Wws)max aDd (Wwy)min are
maximum and minimum vertical helicity over
entire domain. Freestream flow from left to
right; planes represent full flow domain

Ficure 8. Iso-surfaces of vertical helicity for
Case CC at tf = 0.17: surfaces denote 10% of
maximum (over entire domain) positive value;
(surfaces of 10% of negative are qualitatively
similar). Subdomain shown extends from sur-
face to inversion, over L;/4 and L,/4 in lat-
eral directions.
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In future work we plan to investigate the dynamics of the ‘tornado-like’
convection patterns, to compare therm to coherent structures found in LES
studies (such as Schmidt & Schumann’s ‘spokes’ [5]), and to determine if
they are at all related to ‘dust devils,” ‘water spouts’ and ‘steam devils’
found in the atmosphere — or perhaps even share some features with large-
scale rotating ‘supercell’ convective storms {15]. In particular, we would
like to ascertain the source of their vertical vorticity and understand the
role of mean shear in their formation and evolution, and thereby shed
light on the creation mechanisms of related atmospheric phenomena.
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DECAY OF TURBULENCE IN FLUID WITH DENSITY FLUCTUATIONS UNDER THE
STABLE STRATIFICATION
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Tnstitute for Problem in Mechanics, Russian Academy of Science,
101, prospect Vernadskogo, Moscow, 117526, Russia

Introduction. Turbulent mixing significantly affects various processes in atmosphere
and ocean, chemical reactors. power plants etc.. In most of these cases the effect of buoy-
ancy forces is of profound imporiance. The modelling of these processes is very difficult
problem because of effect of buoyancy forces on the turbulent micromixing is not well
understood. On the other hand there are no data on intensity of turbulent micromixing
when buoyancy forces are significant. At the same time it is the process of turbulent
micromixing that defines the density distribution and hence buoyancy forces. Owing to
turbulent micromixing occur density fluctuations decrease and hence buoyancy forces de-
crease also. Therefore significant interaction of mixing up to the molecular level with
buayancy forces exists. Because the closed mathematical models for developed turbu-
lence are absent and semi-empirical models are not well developed the main features of
the interaction process between turbulent mixing and buoyancy forces must be studied
experimentally.

One of the most attractive type of laboratory experiment on turbulence is to study
decaying turbulence downstream of a turbulizing grid. A number of experiments on
decaying stratified turbulence have been conducted np to date. The experiments were
carried out in salt-stratified water closed loop channels and tow-tanks with stationary
salt-stratified fluid and also in wind-tunnels having thermal stratification. Each of the
experiments has shortcomings and advantages and there is no ideal type of experiment
on decay of turbulence in stratified fluid. For instance the results obtained on the same
experimental set up (Stillinger’s closed loop channel [1]) but by different scientists are
directly opposite. The results of [1] show that the decay rate of turbulence in stratified
water is less than decay rate in non-stratified case. Alternatively the experiments carried
out by Itsweiere et al [2] reveal the opposite results. As a rule these studies are carried out
for a linear stratification and for a single value of average flow velocity. In addition these
experiments do not provide a direct determination of micromixing intensity and the effect
of buoyancy forces on the decay of turbulence is described on the base of scveral qualitative
considerations. from this point of view a density discontinuity between two layers of
mixed fluid of different density and having stable density distribution is very interesting
object for studies. This object is a direct analog of atmospheric and oceanic phenomena
and is convenient {or developing mathematical models. In addition the increasing of
thickness of interface layer after ceasing all twrbulent fluctuations allows us to obtain
integral quantitative features of turbulent micromixing process.

Experimental setup and instruments. The experiments were carried out in the
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steel water channel of 50x50 cin cross-section and 3 m length. The channel has two
carriages one of which is provided with a twbulizing grid and the other with measuring
instruments. Tlie carriages are towed along the channel. The side walls of the channel
are provided with optical glasses. The turbulizing grid is made of Plexiglass bars (1x1
cm) and has a mesh size M = 5,0 cni. The channel was filled with two layer fluid: top
layer is fresh water and bottom layer is salt water. A shadow setup and laser scanning
refractometer are used for measuring of vertical distribution of density. The intensity of
micromixing is evaluated by measuring difference between initial (before mixing) and final
(after all motions ceased ) vertical density distributions of initial Sy and final $; values
of thickness of the interinediate layer AS. A hot-film technique with standard DANTEC
quartz-coated wedge-shaped sensors are used for measuring of the velocity fluctuations.
Density difference between two layers Ap, grid velocity U and mesh size M were changed
in experiments to obtain dependencies of integral micromixing intensity AS and integral
effect of buoyancy forces on these parameters. A Richardson numnber may be built as a
form of Rz = -"%&%ﬁ and then may be rewritten in the form 2 = ;M—,'-, where M7 = Qpﬁ . !:1
and Fr= E[fl\? This is an integral form of the criteria. Iu the local form M: = g% . !If and
Fr= ﬁ%, where I; is twbulent length scale and ¢* = (') + (v'?) + (w?). Both citeria
have a clear physical sense. The Mi number is a ratio of turbulent length scale to the
stratification length scale. The Fr number is the ratio of kinetic energy which is fed to
the fluid to the potential energy that liquid particles are received displacing at a distance
L.

Experimental results. Measurements of the streamwise compouent ofa the turbu-
lent kinetic energy i‘(‘%l are presented in Fig. 1 for non- stratified and stratified cases as
a function of the non-dimensional distance {tom the grid x/M. In the uniform case the
results obtained follow a power law with -0.8 power exponent. In the stratified case the
accelerated decay starts at some poiut, then levels out, and finally steepens again to the
parallel line to the non- stratified curve. The difference between areas under these curves
characterizes an integral effect of huoyancy forces on decaying turbulence. In addition
the magnitude of micromixing intensity defined as a ratio %—','5:- as a function of Fr nuber
7\%-2_ for different values of Mi number are presented in Fig. 2. The figure shows that for
small values of Fr number the curves for different Mi number are in coincidence with each
other. As Fr increases the common curve splits into three different curves for different
values of Mi number at some point. The higher Mi munber the higher integral micromix-
ing intensity. In addition we have found the two principally different mixing regimes in
our experiments. The first regime is ’usual’ one when the thickness of the intermediate
layer increases and the maximum of gradient decreases after passing the grid. This regime
occurred if the mesh size M of the grid was sufficiently greater than initial effective thick-
ness of the intermediate layer 3¢ < |. It was a surprise for us when we found that with
increasing of this ratio ( by increasing time delay before towing the grid) sharpening of
the interface and increasing of the maximumi gradient occur. This phenomenon can be
explained by more easy mixing in the top and bottom layers owing to that only a small
gradient is presented in the layers after a time delay. In the same time the two-layer
system is still sufficiently strong. In other words it seems that in this case the bottomn
and top layers are mixed separately (each as a whole) and only a small mass exchange




occurs between the layers. As the result the intermediate layer is sharpened and maximal
gradient increases.

Approbation of the method proposed As the test samples we choose the results
of experimental researches of turbulent decay [3] and the process of changing the turbu-
lence in flow with howmogeneous gradient of the mean velocity (i.e. uniform shear flow)
[4]. For the description of non-isotropic case [3] all fluctuation component equations are
necessary. As in [5] the second momeut equations in homogeneous conditions with zero
third moments become: b

—(:}f-:—?~ﬂ-.5'.y+e (1)
where 5, is the turbulent fluctuation inteusity, « is the turbulent friction intensity, and
¢ is the intensity of pulsating forces caused by pressure and friction. The dimension
argumnents ([o] = 771, [e] = L - T7%)) lead to the next relations [5):

w=ay BV Le =gy B¥?L, (2)

where I£ = (5; + 53 4 53) 1s the turbulent kinetic energy, L is the integral turbulent scale,
ap and & are the dimensionless constants. The integrating of the set (1) was fulfilled with
the second order Runge method with the time step about 0.0002 sec. or the equivalent
step for axial direction. The best coincidence of calculated and experimental data were
obtained for values @y = 0.75 aud o = 0.30, some different from the values obtained in
[9] by the comparison of our equations with equations of some two parametric turbulence
models [6] where «y = 0.45 and ey = 0.20. The results of energy decay calculations
depicted on Fig. 3.

In [3] twbulent scales themselves have not been measured but they can be assessed
from the measurements of turbulent energy dissipation if a ralationship for determining
of the scale takes the form:

Ly,
Cg ~ A (3)

The experimental data for the scale have been approximated with linear dependance
obtained by least-squares method.

For stationary turbulent uniform shear flow only one component of velocity differs from
zero and changes aloug the trausverse coordinate. The shear is called uniform if velocity
is a linear function of the coordinate. In the process of flow rebuilding the integral scale
is changed strongly and, as it will be shown below, our mnodel results in appearance of the
third moments, i.e. the turbuleice becamne non-uniform regardless of initial uniformity
and uniformity of the shear.

Preliminary analysis has been performed for plane layer and in the absence of gradient
of average pressure and third moments. The last assumption is the same as the assumption
of umformity of turbulence. In this case the equations {or turbulent intensities are:

98
Uy s oo (L4 6,)) - Siy - QUi fOX, =2 - Si+ & (4)
aX,
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For the example in cousideration the magnitude of (v’ w') = Sy is the only different
from zero from the others second moments. The equation for Sya is:
v(z)- 238 - s, 00,/0Z ~ 2« Sis ()
0x

The calculations are performed by using the set of equations (4)and {5).The calcula-
tions were performed for a given valne of shear by Runge-Kutta method with time defiued
by a relationship # = X/U(0) and with a step df = 0.001.

Equilibrium parameters. Some possible regimes were tested to assess dependencies
typical for quasi state or stationary regimes. If proposed that the turbulent characteristics
reach their stationary values ratlier rapidly, so that values of the parameters are defined
by the local values of shear and are independent of history, the results obtained can be
called cquilibrium. The calculation of equilibriuin values was performed using a sct of
algebraic equations deduced with setting to zero of the right hand parts of our set of
equations wherein spatial dexivetives of second moments are also omitted. The set of
equations takes the forun:

€y

(win) = v Egn (6)

(vae) = (uge) = f‘;—u - (Ew + (—ma(iééi)f i (7
(') = 5’% : 3'-% L. EY? (8)

(Bim) <= (2 au)?- (2::}(1'0 ~ 3 &) (%[’2{ LY (V)

For the comparisons, data obtained in the case of uniform shear have been chosen {4).
These data was recommencded by STANFORD PROGRAM 90/91 . The measureinents
have been carried out in wind tunnel d. o istream of turbulizing grid. lntensity of tur-
bulent velocity component and turbulent scales were measured for different shears aud
meshes of the turbulizing grid.

Prelimivary calculations show that as opposed to the uniform case if changing of
integral scale does nol take into account the results obtained are not in agreement with
experimental daia. Much better agreement of calculation with experiment has been found
when an experimental dependence is used for integral scale. The best coincidence is
observed when ay = 1.1 and go = 1.1 that somewhat differ from the constants used for
the uniform case.

Fig.4 shows turbulent energy and intensity of longitudinal compounent of velocily as
functions of time for typical value of shear. When the shear is minimal (caseL[4]) the
agreement is soinewlhat worse. Equilibrivan values of parameters E, ( and «"?) are shown
on the same fignres by dashed lines.




Besides the conditions of our ewn experiments in water channel were modeled. In

this case a set of equations for turbunlent intensily of velocity and concentration takes the
form:

9Cr _ 95

g 9z
NS, L ac da.
St= 2SS S - A

ot

d5, . . s

— = 2.0 5 +€— —
ot 0z

Q(;;—: 2. Sybe—2-834 Fr—1 Q{%E
3;::4 = (o) Sas ~2- S Fr— 8y %%‘3 -92. %‘%}i’

where Cr is averaged concentration, S; = (¢?) is intensity of concentration fluctu-
atious, Sz = (w'¢) is tmrbulent vertical mass flux, A is concentration dissipation. The
termns azqq = (0'c'?), apy = (W', azaz = (W), and azyy = (W'} are the third moments
which are determined by equilibrinim consiaeration. Factor Fr represents effect of bulk
and pressure forces and is determined by following relationship:

a9 = 2 IN[0Z (10)
(@p+ b, Cr)- b, '
where g s acceleration of gravity, e, and 0, are the coefficients in relationship Le-
tween concentration and density which can be accepted in this case as the simplest linear
relationship between inverse p and ¢ and has a fornu:

1
-=u,+0, ¢
I

Zero boundary conditions ( ai the top and at the bottom) were accepted for vertical
and longitudinal components of velocity fluciuations and zero derivatives for other vari-
ables. The results of calculatious performed for decaying turbulence in the experimental
water chaunel using this set of equations are shown on Fig. 5. Two cases are presented
on the figure: one is the non- siratified case and the other is the case with stratification
when salt concentiation of bottom layer was ¢ = 0.4%. The figure shows that as well
as for the mentioned above calculations of decaying homogeneous turbulence in exper-
iments of Lienhard [3] we have acceptable agreement between the calculations and our
experimental data. As expected, in the stratification case the curve begins deflect from

non-stratification one at some point and the caleulating curve satisfactory describes the
experimental data too.
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Statistical approach of wave-vortex interactions in stably
stratified homogeneous turbulence

F. S. Godeferd and C. Cambon
Lab. de Méc. des Fluides et d’Accustique - URA CNRS 263
Ecole Centrale de Lyon

1 Introduction

The gravity waves generating effect of the acceleration of gravity upon a density stratified fluid can be
found in as various geophysical flows as the atmospheric layer, or in the ocean, where a stable stratification
is found at a given depth, depending on the location and the season. The spectrum, i.e. the repartition
of the energy of internal waves with their wavenumber, can be computed in different manners, and it is
well known that a weakly non linear theory such as that by Garrett and Muak bas led to both qualitative
and quantitative agreement with measurements in the ocean [1]. However, a review by Miiller ef al.
brought to light the main drawback of such weakly non linear techniques, which is to put aside every
kind of vortical motion, since a “wave turbulence” cannot produce any vorticity [2]. Indeed, interactions
of internal waves with turbulence, and specifically with vortical modes (within a given decomposition
explained below) are shown to produce triadic energy exchanges when a resonance condition is fulfilled.
Therefore, more sophisticated approaches of stably stratified turbulence (SST) are necessary to explain
the apparition of anisctropic tendencies in such flows. Among therm, the most important must be the
severe restriction of motion in the directicn of the mean density gradient, which suggests a horizontal
layering of the How with a strong vertical variability. The corresponding velocity field then becomes
almost “two-component” but certainly not “two-dimensional”. The importance of this distinction has
appeared recestly in order to avoid confusion with the bidimensionalization of flows created by solid body
rotation (SBR) effects in some cases [3], or eventually by an external maguetic field. One can iniroduce
this distinction in the behavior equations through a “componentality” and a “dimensionality” tensor.
Hence, a quasi two-dimensional flow corresponds to a flow whose vertical variability is greatly reduced,
or in other words, in which the length scale associated with vertical derivatives (8/8zy) is large. But
the vertical component uy of the velocity does not necessarily go to zero. In the SBR case, dominant
structures are column like. On the contrary, in the case of 88T, uj — 0 but not 3/9z). Such vertically
decorrelated structures are stretched in the two horizontal directions and are thin in the vertical one,
suggesting pancakes slipping on one another, or sheet like structures brought to evidence by experiments
in the atmospheric layers [5]. Our approach is to study these anisotropic tendencies in spectral space,
where the identification of energy exchange mechanisms can be detailed. For this purpose, a statistical,
two-point, EDQNM type model is used, rather than Direct Numerical Simulations, since it is based or a
linear wave/vortex decemposition, and permit us to have a close view of the eight types of energy transfer
arising from this splitting. Statistical approaches of the same kind kave been used , in a somewhat simpler
manner by Carnevale and Frederiksen [6], or by Holleway and Hendershot [7].

2 Cverview of the statistical approach

2.1 Behavior equations

For stably stratified turbulence, we consider the Boussinecq equatious where the density gradient v has
its only non zero component in the z3 (vertical or gravity) direction, and leads to a constant Brunt-
Viisila frequency N = (Blv|g)/? in the whole flow, where ¢ is the gravity, and 8 the thermometric
expansivity. Moreover, the Prandtl number is assumed to be equal to one. The fluctnating velocity field
u, the pressvre field p, and the perturbation temperature field T around the barotropic equilibrium state,
explicitly depend on the location in space @ and on the time ¢ at which they are evaluated. We assume




that the turbulence is statistically homogeneous, which allows us to Fourier transform all the quantities,
denoted by a ~. The spectral equations for the fluctuating quantities are:

It

[?_ + ukz] ik, ) — Pia(k, £)gB7(k, 1)

= =1k Pin(k) (W145) (K, 1)

It

[562 + usz #(k,2) — yiig(k,t)

=1k (7) (k, 1) (1
where ¥ = |y| and I? = —1 and P;;{k) = &; — %’;J- is the projector on the plane orthogonal to k. The
fluctuating pressure has been removed from consideration by projection of the equations on the plane
orthogonal to k, since the zero divergence property of the velocity field amounts to k- u(k,t). One of the
original aspects of the present approach, introduced by Cambon [8], is to gather the fluctuating velocity
and temperature fields under the same vecior, using the (now free of velacity component) direction of k
to hold the temperature component of the resulting vector, and a kinematic dimensioning, as follows:

iy
kN

The component on the k direction is complex for the velocity-temperuture ¥ to be real in physical space.

Bi(k, 1) = ik, &) + T2 <1k, 1) = Gk, 1) + B (R, 1) 2

2
Because of the orthonormal properties and the scaling coefficient A¢/N, %-fz,-‘ %= 070+ 3 ('%‘L) [ d
simply gives the speiiral density of total energy (kinetic + potential). The resulting equation for © has

the following shape:

|5+t + Lo = [ Mpkeaneoneods O
k+p+g=0

in which we will not give detail for the linear and non linear operators L and M (see [9] for the complete
set, or [10] for a comprehensive approach). The second order and third order spectral temsors can
be computed using the relations: {(%;(p, £)5;(k,?)) = Vi;(k,t)6(k + p) and (3;(k,?)9;(p, V)bi(q, 1)) =
f’,-,-,(k, p,t)8(k+p+q); the resulting equations are easily derived ftom (3). The classical closure problem in
the spectral formulation of homogeneous turbulence is present here for the © variable as well: the equation
for V;; includes non linear terms containing the third order correlations V;p,, and the equation for the
latter, in turu, include fourth order ones, ... The Eddy Damped Quasi Normal Markovian hypothesis [11]
expresses the fourth order correlations in terms of the second order ones, as for a normal law with a
gaussian distribution, but for a damping proportional to the third order correlations. Symbolically, one
can sum up the whole process as :

<VVVVo=<VV><VV> —n<VVV>

where n is the damping. Following previous works [3, 4], the damping is chosen to follow the standard
isotropic rule : g(k,2) = vk? 4+ 9'(k,1) = vE* + A [fnk sz‘(p,t)dp] where A = 0.366 and E is the
isotropically accumulated kinetic energy spectrum.

2.2 Decomposition on the e¢igen frame

The eiger modes of the linear operator Li; correspond to the propagating mode of motion on the one
hand, 2nd vo the stationary rotational mode on the other. For each propagating mode, associated to the
internal waves in this Jinear decomposition, two directions of propagation are possible, labeled £ = £1,
while the non propagaiing mode is labeled using ¢ = 0. The velocity field is then decomposed in terms of
its components on each of the three above modes, and this approach turns out to rejoin the decompesition

of w in the Craya-Herring frame already used for axisymumetric turbulenee {12, 13]
= glel + 5% elk)=(kxn)/|kxnl; (k)= (kxe!)/|kxel|

in which it is necessary to use au auxiliary unit vector which bears the axis of symmetry. For stratified
turbulence, the base vector is chosen to be n; = g/¢ as shown in figure 1. Such a decomposition can also
be seen in physical space [14] as :

u= Vi, x¥n+ Vid+unn (4)
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Figure 1: The Craya-Herring frame of reference for axisymmetric urbulence.

for the velocity field, for example, in which the first term in the right hand part contributes to the
horizontal vorticity, with stream function ¥/, and the non divergent contribution comes out of the scalar
potential ¢. Those two terms contain all the horizontal velocity. The third component uz comes entirely
out of the vemperature field, and plays the same role as the dilatational mode in the classical Helmholiz
decomposition for compressible flows. us is evidently not two dimensional since its associated potential
&’ depends on all three components of space. One can see a direct link of this linear decomposision with
quasi-geostrophic turbulence. ‘This latter theory, applied to both rotating and stably stratified flows,
assumes a geostrophic balance of the pressure gradient in the (horizontal or) 8-plane approximation, and
a vertical velocity component coming from a decoupled variation uf the motion in horizontal planes [15].
A potential vorticity equation for the geostrophic and Boussinesq approximaticns can be written as :
2 6{,!

q=viw+ LS Q
where the rotation is taken into account through the Coriolis parameter f. The first term in the righi-
hand side of (5) shows the contzibution of the stream function ¥’ to the horizontal mode of motion, while
the second one indicates that the vertical velocity plays a significant role in the flow. For low Rossby and
Froude numbers, the statistical models have to rejoin the semi-geostrophic approximation. Indeed, it is
clear that stably stratified turbulence is close to it at very low Froude number, since the vortex eigen
mode component rejoins the horizontal geostrophic motion, which is not the case for SBR. turbulence,
even at low Rossby number, since it restricts its larger velocity compouent to the veriical direction, with
no vertical variability. Thus, one may be able to use the statistical theory with a kigh stratification to
predict featu. s of geophysical flows that fall within the range of the quasi-geostrophic theory. In all the
cases, the exact eigenmodes are obtained by single linear combirations of ¢*, €2, e® = k/k, so that they
form an orthonormal frame for the new veetor  [10].

2.3 Enrergy equations for axisymmetric siratified turbulence

The following equations are obtained for the spectral density of energy Y < 3™ > of the components
#* of the velocity-temperature field.

[% + 2u1c2] &i(k,t) = THk,2)
[g? + 2uk2] Ba(k,t) + Nsin i ¥r(k,t) = T?(k,t)
[?% m’] ®3(k,t)— Nsin8,Wp(k,t) = T%k,t) (6)
[(% + 2uk’] Wrik,t) — 2N sin 04 [@5(k,t) — ®3(i,t)] = TY=(k,1)
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In these equations, the $; = % <> spectrum is the kinetic energy of the vortex mode, ®; (same

definition) is the kinetic energy of the wave mode, and @3 is the potential energy of the wave mode. The
real part of the ¥ spectrum corresponds to the heat flux. Each spectrum, as well as the corresponding
non linear transfer term T° depends on the wave vector k. through its modulus & and its orientation to
the vertical direction dx. The stratification appears explicitly in the linear operators of these equations
through N, but also within the detailed form of the transfer teras T, T2, T3, T¥# which is not given
here for the sake of of brevity. Each non linear transfer is the suin of the contributions in an eightfold
decomposition according to the values &1 (wave) or 0 (voriex) of the ‘polarity indices’ ¢, ¢’, €”. These
contributions are of the kind

1 S!tr u(k,p q)t)
T =/ = - - d 8
(k1) k+p+g=0 Opp, — IN(esin b + ¢'sind, + " sin 6;) pdq (8)

where the numerator of the integrand involves double correlations and known geometric factors. Ii is no
wonder that equation (8) contains an expression that resembles,in the limit of low Froude number, the
resonance condition

Wit wp+wy=0 (9)

on the pulsations wy = N sin 6 of a triad &, p and q of internal waves, such that
k+p+g=o (10)

Since we deal with a linear decomposition of the velocity fieid, the linear eigenmodes that we consider
indeed correspond to internal gravity waves for |¢] = 1 so that the three Fourier modes that are involved
in the triple correlation tensor lead to the appearance of a phase that includes the sum of the three
pulsations. The triadic condition (10) is given by the comvolution product, which comes up to be an
integration over triads of wave vectors only. Therefore, the bottom part of the expression under the
integral in (8), which is the characteristic time introduced by the EDQNM model to damp the Seeren
interaction, does not explicitly depend on N for resonant triads only, and leads to a scrumbling of the other
triads. We notice that are permitted interactions between wave modes only, bui also mixed interactions
with vortex modes ¢ = 0, and finally pure vortex iuteractions, in which case, since all ¢’s are zero, the
stratification no more explicitly appears. In the next section, within the light of this decomposition, we
compute the detailed energy transfer spectra for the eight kinds of interaction. If we set N = 0, isotropic
turbulence is obtained, for which we also retain the eightfold splitting, and compare them with their

counlerparis in a stratified case, in order to see the specific influence of the stable stratification on each
term.

3 Numerical results

"The axisymuetric equations for the EDQNM stably stratified model are solved using a discretized wave
space, in which 37 spectral modes are retained, and 19 spectral angles. There are 21 azimuthal angles
that permit the three dimensional triadic interactions. The computations correspond to freely decaying
homogeneous turbulence which is subjected to the effect of gravity at time T° = 0. We choose here to
present the resulting energy spectra for one case of stratification, that corresponds to a Brunt-Viisila
frequency equal to 7, at a time at which the non linear anicotropic trends bave become significant.
The actual EDQNM model which is used for the present computations includes the explicit effect of
stratification at all the levels of the closure, i.e. in the non linear terms of both the equations for
the second order and third order spectra. A simplifiecd model, which achieves much lower irreversible
anisotropic tendencies, cau be used, in which the equation for the triple correlations retains stratification
in the linear terms only (see vanHaren et al., present meeting). Explicitly, the most complete EDQNM
model shows that the vortex kinetic energy @, and the wave total energy @2 + ®3 accumulate around
the vertical direction in spectral space, the “polar zone” where cos8: = 1.

The coraputations have been initialized using an aralytical isotropic specirum E(k) for the wave and
vortex kinetic energy spectra : @ = &; = E(k)/4mk?. Moreover, initial potential energy is supposed
to be non zero at T = 0, so that ®3 = E(k)/4wk® also. The purpose of this procedure is to see how
the anisotropy evolves in the very first stage of the cornputation under the influence of the non linear
transfer terms alone, in (6). These letter equatious show that, if the &4 and ®3 are different initially,
the linear operators that include N rakes them oscillate immediately, effect that is canceled if they are
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Figure 2: Two ways of representing the spectral distributiou] of the vortex kinetic energy ¢;: on a linear
plot with curves depending on the orientation of the wave vector (left) ; on a (ks,k,) representation
(right) (N = = and non dimensional time NT/27 = 3).
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Figure 3: Same as left part of figure 2 for the spectral distribution of the total wave encigy ®2 + ®3 (the
caption holds for all the plots in this paper).

equal. However, @2 and 93 begin to oscillate somehow, after the non linear terms have built a difference
between them. We do not bother with these temporal oscillations by looking at the spectra of the total
energy of the waves, which is a non oscillating quantity as is ®;.

3.1 Anisotropic spectra

We show here the anisotropic ®; and &7 <+ &3 specira in two different ways : first, a linear plot, with the
different curves correspoading to different directions of the wave vector. The polar zone corresponds to
cos Uy = 1 and the equatorial (horizontal) part to cos#; = (. The second representation shows a vertical
plane in spectral space, on which isolines of energy are represznted on a (kz,k;) coordinate system. As
seen on figure 2 and 3, the anisotropy is poorly reflected by such a representation, only through a somehow
elliptic shape of the isoenergy areas. Whereas the advantage of the linear plot is to compare directly the
levels of energy al different angles, which clearly shows that the inertial range contains more energy at
the pole than at the equator.

3.2 Transfer spectra

On the contrary, the bidimensional representation gives a good view of the areas from which energy is
removed, and those to which it is given, i.e. it is especially useful when looking at the transfer spectra.
We show on figure 4 the uon linear trausfer terms occuring in the ®; and in the ®; + @3 cquations.
The detailed transfers for the eight types of interaction constituting the non linear transfer spectra
give us some insight in the generating mechonisms of anisotropy. As figure 5 shows, the pure vortex
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Figure 5: The pure vortex interactions (where € = 0, €' = 0 and ¢” = 0 in (8)) in the two representations
(same conditions of the computation as previous figures). The isclines are dotted for the areas of negative
transfer, and plain for the areas of positive transfer. It is clearly seen thai the energy is transported
towards the vertical direction of k.

interaction consists only in the advection of vortex energy from the equatorial zone to the polar one.
Since this term is not directly affected by the stratification, the shape of this part of the transfer is
completely recovered in the case of isotropic turbulence, for which the EDQNM model still retains the
eightfold splitting. The mixed interaction terms, between waves and vortex, are not presented here since
their anisotropic features are not as clear as that of the pure vortex interaction. However, figure 6
shows the pure wave term, on which we see that it contributes to the scrambling in wave space, as is
suggested by the characteristic time associated to it in (8). The latter equation shows that, when the
resonance condition is not verified for a given triad, the N contaiving part of the nonlinear transfer
acts as a scrambling mechanism in spectral space. It can also be seen that the pure voriex interaction
leads to a zero energy transfer exactly at the pole. Therefore, the accumulation of energy due to the
vortex interactions around the pole, cannot become a complete bidimensionalisation of the flow at larger
times. The pure wave interaction, in turn, reajusts the scales at which the kinetic energy concentrates,
at trausports some of it {o the vertical directiou, but is definitely not sufficient to explaia the collapse of
stably siratified turbuience. Finally, if the vortex kigetic energy accumulates at the pole, the condition '
of axisymmetry staies that ®; = ®; in this directiou, which also leads to having an accumulation of wave
kinetic energy, thus of the total v.ave encrgy.

The structure of the fiow in physical space is may be caracterized in different ways. For example,
figure 7 shows the temporal evolution of the length scales of the horizontal component of the velocity
with respect to horizontal and vertical separations. Normally, in freely decaying turbulence, the length
scales jacrease, as a consequence of the decreage of energy in the flow. It is the case for { 1,1 here. But
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I11,3 starts from the same value, which corresponds to our initially isotropic conditinos, and stays roughly
at this level. This behavior indicates that the transfers in the vertical direction are more or less inhibited
by the presence of stratification. The resulting structures of the flow can then be viewed as elongated in
the two horizontal directions, as could be a sphere, flatened on one of its axes. The image of “pancake”
like structures may be a bit rtrong, for the layers in the flow are not totally decorrelated vertically, but
remains anyway a good shorteus for expressing all the above mentioned ideas.

The main conclusion of this work is that the pure vortex interactions are the most important generator
of non linear irreversible anisotropy for stably stratified turbulence. A simplified Reynolds stress tensor
mode] that may reproduce these non linear tendencies has to account for this kind of interaction, in a
first time.
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INTRODUCTION

Rotation and stable density stratification modify the turbulence dynarmics in many
geophysical situations and on a large range of scales. Riley et ¢l. (1981) and Lilly (1983)
have suggested that, in the limit of small Froude numbers, stably-stratified turbulence
could obey a two-dimensional turbulence dynamics. However, the numerical studies
by Herring and Métais (1989) and Métais and Herring (1989) have shown that the
Liorizontal motion dominates in a strongly stably-stratified environment, but the flow
develops a strong vertical variability and reorganizes itself into decoupled hiorizontal
layers. The shear of the horizontal velocity at the interface between the layers leads to
energy dissipation, and prevents the turbulence fromn exhibiting the characteristics of
two-dimensional turbulence.

Geophysical observations, laboratory experiments (Hopfinger et al., 1982; Bidokhti
and Tritton 1992) and numerical sirnulations (Lesieur et al. 1991; Métais et al. 1992,
Bartello et +l. 1994) have shown that a solid-body rotation stabilized the cyclonic eddies

{(with vorticity parallel and of the same sign as the solid-body rotation 2Q) . Conversely,
anticyclones are three-dimensionalized for moderate rotation rate and stabilized at high
rotation. Furthermore, as opposed to stratified turbulence, & solid-body rotation when
applied to three-dimensional turbulence generates vertical coherence (see Bartello st
al. 1994): for Rossby numbers close to unity, the three-dimeunsional flow reorganizes
itself into two-dimensional cyclonic vortices. At a larger rotation rate, two-dimensional
anticyclones also emerge from the initially-isotropic flow. Therefore, stable-stratification
and rotation have antagonistic effects on turbulent flows: horizontal layering of the flow
in one <ase and emergence of vertical quasi-two-dimensional rolls in the other one.

We numerically investigate the effects of solid-body rotation on stably-stratified
turbulence: at first with energy injection at small scales and then in a freely-decaying
situation. Various Rossby, R, and Froude, F numbers are considered. The Brunt-
Vaissald frequency N is assumned to be constant. The three-dimensional Navier-Stokes
equations within the Boussinesq approximation are simulated and homogeneous turbu-
lence is investigated. In order to reduce the dissipative and diffusive ranges extension,
the Laplacian operator in the viscous term 1s replaced with an iterated Laplacian (see
Basdevant and Sadourny, 1983): in this study, we have ewuployed A?. The compu-
tational domain is a cubic periodic box, the resolution is 64° collocation points, and
pseudo-spectral numerical methods are used.

FORCED-TURBULENCE SIMULATIONS

Turbulenre and Waves

When solid-body rotation and stable density stratification are simultaneously present.
one must find a simpie way of discrimating between the turbuleut part of the motion
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As a first order approximation. oue can cousider that all the vertica: velucizy -
associated with the wave motion: w, = w (where the v index stands for wave . The
wave density Held can be easily derived from:
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with w? = (N2k} + f2k2) / (k} + k?). The facts that the wave field has no porential
vorticity and also that the velocity field is non-divergent lead to:

= -—iw’@w = .\"zu' (3)

0w f 6°Q, FPw f 0%*0,
2 __Ow | 2, __9w T
Vit = 0z8x N2 920y ° Virvw 928y + N 5762 (4)

These expressions were previously derived by Miiller et al. (1986) and Lelong (1990).

Notice that for f = 0, oue recovers the classical decomposition of the horizontal
velocity field into rotational and divergeot components. It is equivalent to Craya’s (1958)
decomposition, which has been used to discriminate between stratified turbulence and
internal gravity waves (Riley et al., 1981; Métais and Herring 1989). Subsequently, we
call vortical mode the rotational component of the horizontal velocity field:

W :
uu“ayl ‘)v‘—aanlthwz“‘ de) b (O)

where w, is the vertical vorticity component.

Numerical Simulations

For the present runs, the flow is forced at small scale: the forcing is random in space
and Markovian in time, and acts on a wavenumber band (kg = 10 < & < 12 = k7).
We define ky = (ks + k7]/2 to be the centroid of the lorcing wavenumber band. These
conditions are analogous to those chosen by Herring and Métais (1989). The forcing is
three-dimensional and acts equally on the three velocity components u, v, w {no density




forcing). The intensity of buoyancy and rotation effects will be characterized by a
Froude number F;., and a Rossby number respectively defined as:
- 1/2(w§+w§>. ) ©)
= . =

where w;,wy and w, are the relative vorticity components, and the angular brackets

stand for a spatial average. §2 and the mean stratification are both oriented along
the vertical directivii. We here focus on the small Froude number régime when the
Rossby number ranges from large (slow rotation) to small (rapid rotation) values. We
concentrate on the energy transfer from the injection scales to the large scales.
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Tig.1l. Three-dimensional wavenumber spectrum of the vortical kinectic energy for various
values of 2 and N.

In Figure 1la, we display, for various cases, the three-dimensional wavenumber spec-
trum of the vortical kinetic energy when the system has reached an equilibrium. In the
absence of rotation and stratification, for & smaller than the forcing wavenumber the
energy is equipartitioned between the modes: this yields a £2 spectrum. One may notice
that, for k > kj, the spectral shape closely corresponds *  a k~%/% Kolmogorov energy
cascade. In the non-rotating strongly-stratified case (§2 = 0; N = 4m; F, = 0.2), the vor-
tical energy trausfer towards the large scales is more efficient than in the non-stratified
case and the spectrum is shallower than k2. The buoyancy effects arc still dominant
when a weak rotation ( = 2 /10; N/f = 10, R, & 1) is imposed: the spectral be-
haviour remains almost unchanged. A complete change is observed for strong rotation
(2 =2m N/f =1, R, & 0.1): the spectrum now follows a k~%/% law for k < ks and
the spectral slope is increased for k > ky.

As pointed out by Charney (1971), for geostrophic turbulence, both the total cu-

ergy, and the potential enstrophy are conserved by the non-linear terms of the equations.
One can write:

Eg = / E(k)dk; D, = / FER)dE (7)
0 0
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This double conservation property is analogous to two-dimensional turbulence, the dif-
ference being that E(k) is here a three-dimensional spectrum. Furthermore, the cnergy
possesses three components: two kinetic and one potential. Nevertheless, this constraint
should prevent the energy injected at a wave-number &y from cascading towards larger
%k and it should be uniformly transferred to lower wavenumbers along a &75/% spectrum
similar to the two-dimensional turbulence energy cascade proposed by Kraichnan (1967).
The nunerically observed k~5/3 behaviour for small k¥ could therefore Le a manifesta-
tion of geostrophic turbulence dynamics. This will be confirmed by the subsequently
presented results.
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Fig.2. = 2m; N = 4n: a) three-dimensional wave-number spectrum of the total kinetic
energy (JX Eiorai) to the aralogous spectra for the geostrophic kinetic energy (W Eye, = E}; +
EY.) and the inertio-gravity wave kinetic energy (K Eyqye) ; b) three-dimensional spectra of
the geostrophy energy components EE, E% and E.

Figure 1Db is the analogue of Figure la. Here, the vortical kinetic energy spectra of
the isotropic (no rotation, no stratification) and the strongly-stratified, rapidly-rotating
cases are comlpared to the one obtained when only fast rotation is applied without any
stratification (§ = 2w; N = 0). We have checked that the large-scale flow exhibits
quasi-two-dimensional vortices composed of both cyclones and anticycloues are prescut.
However, although the flow contains these highly-anisotropic structures, the slope of the
vortical kinetic energy spectrum for small &k remains close to the isotropic k% spectrun
(see Figure 1b).

A particular attention is now given Lo the strongly-stratified. rapidly-rotuting reginie.
Due to the nature of the forcing, energy is injected in the inertio-gravity wave os well as
in the geostrophic part of the motion. Figure 2a compares the three-dimensional wave-
number spectrum of the total kinetic energy (K Eyyiq1) to the sualogous spectra for the
geostrophic kinetic energy (K Eg., = E¥ + EX) and the inertio gravity wave kinetic

energy (K Eyave) constructed with the velocity field uy, vy and w,, delined by (6). Due
to the cormnbined effects of rotation and stratification, the two kinds of motions are sep-
regated: the geostrophic energy dominates the =%/ inverse caseade and reaches Lirver
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and larger scales. By contrast, the wave energy cascades towards the scales smaller than
the injection scales and is therefore submitted to a strong dissipation. A similar picture
can be drawn for the geostrophic and wave part of the available potential energy.

Charney (1971) concentrated on the potential enstrophy cascade and argued that
the dynamics of quasi-geostrophic flow lead, at small scales, to an equipartition of energy
among the z and y components of the kinetic energy and the available potential energy.
Here, the geostrophy energy is equipartitioned among its three coraponents E%, E%
and EZ over almost the whole spectrum including in the large-scale inverse cascade (see
Figure 2b).

DECAYING-TURBULENCE SIMULATIONS

Decay simulations were then integrated to explore the tendency of the flow to
approach geostrophy. Fully-developed turbulent isotropic initial conditions were used
with the buoyancy field set to zero. The initial Rossby and Froude numbers were unity
with N/ f = 0.6. The simulation was integrated for over 200 initial large-scale turnover
times. Over this period R, and F,. decreased by a factor of ten.

In this case, the normal modes of the equations linearized about a state of rest
were used to separate geostrophic from ageostrophic motion. To express the energy
decomposition, it is useful to mtroduce three sets of wavevectors: the barotropic set
B; = fk | kx = ky = 0}, the set with only vertical variability Vi = {k| kz = &, = 0}
and the remaining baroclinic vectors Ry = { k | k2 + k2 # 0 and &, # 0}. If the energy
is

1 1
_Ezk:Uk_E k(GEk+AEk), (8)
where GEy and AEj represent geostrophic and ageostrophic energy, respectively, then
14Dz, if k € Ry;
GEyx = ]ﬁk|2 + |ﬁk]2, if k € By (9)
0, if ke W,
and
AP + A2, ik € Ry
APk = 9§ |dy|? + [B|2/N?, if k € By; (10)
Uk, if ke Vi,
where NG +ifkob .
)y _ k+ifr.0c k
A = Noyk ~ Noyk’ (11)
fE2C + o k? 6y F kY kb .
A Fik Frkzbi 12
Kk 2y kkk, ’ (12)

¢ is the vertical vorticity, & is the horizontal divergence and o = (N2k% + f2k2)'/2 /%
1s the linear wave frequency.

In Figure 3 we present both the geostrophic and ageostrophic contributions to
the energy spectrum. After a few large-scale turnover times a monotonic approach to
quasi-geostrophy was observed, with the geostrophic energy decreasing from its initial
value by a factor of 1.9, while the ageostrophic energy decreased by a factor of 38.9.
As in the forced case, an inverse energy cascade was manifested by a transiation of
the geostrophic-energy spectral maximum to smaller wavenwmnbers. The large scales
became increasingly barotropic while the vertical vorticity kurtosis grew to 6.4 as quasi
2D coherent vortices began to emerge. These were not as apparent as in the simulations
with initial R, = i and F. = oo of Bartello et al. (1994), implying considerable
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Tig.3. a) Geostrophic energy specta (reference slopes correspond to —5/3 and —3) and
b) ageostrophic energy spectra (reference slopes correspond to —5/3 and ~1) as a function of
time for the rotating-stratified simlation with unit initial Rossby and Froude numbers. Curves
are labbeled with their corresponding times.

disruption of phase coherence by the stratification. By the end of the run the geostrophic
energy spectrum was steeper than k2 in the small scales, while the ageostrophic energy
was much more shallow (k™1).

CONCLUDING REMARKS

We have performed three-dimensional numerical simulations in a cubic domain of
forced and freely-decaying, strongly-stratified, rotating turbulence. These have shown
that, for small Rossby numbers, the largest scales are dominated by upscale-propagating
geostrophic turbulence. In the forced case, even if substantial inertial-gravity wave en-
ergy is injected into the system, the flow exhibits a well defined three-dimensional £ —5/3
inverse cascade of geostrophic turbulence, while the wave energy propagates towards the
smallest scales where it 15 dissipated. Furthermore, as suggested by Charney (1971),
the energy in the inverse cascade is equally partitioned between its three components
(kinetic and potential).

The observed atmospheric mesoscale spectra (see Gage and Nastrom 1986, for a
review) exhibit several features in common with the present numerical results: £~%/3 in-
verse cascades for both velocity and temperature spectra with equipartitioning between
each of the two components of horizontal and potential energy. These striking similari-
ties lead us to believe that the mesoscale spectra do correspond to geostrophic turbulence
propagating towards the large scales. One can extract a turbulent Rossby number from
the atmospheric spectra presented by Gage and Nastrom (1988), R, = \/kE(k)/Luf,
where k, E(k) and Ly are respectively the wavenumber, energy spectrum and horizontal
wavelength. For Ly = 100km, kE(k) =~ 1ms™! yields R, = 0.1. The Rossby numbers
in the inverse cascade of our rapidly-rotating simulations are of the same order.

As previously noticed by Métais and Herring (1989), the presence of stratifica-
tion yields the formation of very strong vertical variability wh’ 's to ¢ stroy the
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vortices vertical coherence. In the present simulalions, the two-dimensionalizing effect
of rapid rotation does not seem to be sufficient to restore this coherence. In stably-
stratified, rotasing flows, quasi-two-dimensional organized vorticity structures are only
observed in the presence of a well-defined horizontal deunsity (temperature) front leading
to baroclinic instability.

Fig.4. Cyclonic isovorticity surface resulting from a frontal instability: R, =1 and F,. =
0.5

This is illustrated on Figure 4 which shows the vorticity generation in baroclinic
flows. On the basis of the three-dimensicnal Navier-Stokes equations (non-hydrostatic,
Boussinesq flow), we have numerically investigated through direct numerical simulations
the formation of baroclinic eddies. The basic initial state consists in an horizontal
density front associated with an hyperbclic tangent profile. The corresponding mean
velocity profile is a vertically sheared jet satisfying the thermal wind equation. Here,
the Rossby number (R,) and the Froude number (F}.) are respectively based upon the
vertical and horizontal initial vorticity associated with the basic velocity profile. Here,
R, = 1 and F,. = 0.5, with 96 x 96 x 20 grid points. A strong amplification of the
cyclonic vorticity is observed yielding the formation of long-lived quasi-two-dimensional
cyclones. By contrast, the anticyclonic vorticity is quickly dissipated.
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Nonlinear effects in the unsteady, critical withdrawal of a stratified fluid.

By S. R. Clarke! and J. Imberger,

Department of Environmental Engineering and Cenire for Water Research,
The University of Western Australia,
Nedlands, W.A. 6009, Australia.

The evolution of the withdrawal through a line sink of an initially quiescent, stratified
fluid in a semi-infinite, horizontal duct is investigated in the inviscid, nondiffusive limit. A
weakly nonlinear, long-wave formulation of the problem of critical withdrawal is presented,
which is then used to study the critical withdrawal of a two-layer fluid from a sink at the
base of the duct. Solutions for the evolution of the interfacial shear front are presented
and related to the steady solutious for the critical withdrawal of a two-layer fluid,

1 Introduction.

When fluid is withdrawn from a vertically stratified water body it is found that at suffi-
ciently low Froude numbers the withdrawn fluid comnes from a narrow layer adjacent to
the level of the sink. This process, known as selective withdrawal, has widespread appli-
cation in the management of reservoirs. The density stratification of a reservoir typically
consists of a well mixed layer near the surface, a rapid increase in the density over a few
metres in the thermocline and then a more gradual increase in density in the hypolimnijon.
To model a complex stratification such as this would be very difficult, and also, of limited
use. Therefore research in this field has concentrated on two alternative models of the
fluid dynamics. In one case the reservoir is modelled as a two-layer fluid, and in the
alternative case, as a linearly stratified fluid. For the two-layer model it is of interest to
determine whether fluid is withdrawn from the upper layer. In particular the flow rate
at which the upper layer is just drawn down intc the sink is required, this is termed the
point of critical withdrawal. For flow rates greater than this uniform withdrawal of the
fluid will occur, while for smaller flow rates selective withdrawal of the lower layer fluid
will occur. Here our interest is with this problem for the withdrawal from a serni-infinite
horizontal duct through a line sink when viscosity and diffusivity are negligible. For a
comprehensive review of the general topic of selective withdrawal the reader is referred to
Imberger & Patterson (1990).

It is now well known that selective withdrawal is established by shear fronts, which
are waves of zero frequency that propagate horizontally away from the sink with the
long-wave speed and leave a permanently modified velocity and density structure in their
wake. For a linearly stratified fluid Pac & Kao (1974) demonstrated that an infinite series
of shear fronts would be generated when the sink was started. These shear fronts were
shown to have permanent vertical form and horizontal form of a slowly dispersing step

! Present Addiess; Department of Mathematics, Monash University, Clayton, Vic.
3168, Australia.
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function. Pao & Kao (1974) stated that the thickness of the withdrawal layer could be
deduced by noting that the n** mode could only propagate into the duct if its long-wave
gpeed is greater than the average velocity in the duct. The withdrawal layer thickness
will then be equal to the vertical wavelength of the last mode able to propagate into the
duct. For a linearly stratified fiuid with constant buoyancy frequency N, the densimetric
Froude number is defined as

P il »
where ¢ and h are the flow rate per unit width into the sink and the height of the duct
respectively. Therefore the average velocity in the duct is ¢/k. Defining the withdrawal
layer thickness as h§, it was proposed by Pao & Kao (1974) that as the n** mode has
long-wave speed Nh/nx and vertical wavelength A/n the withdrawal layer thickness will
be

6~ nF. (2)

This gives a critical Froude number of F, = #~1, which is in agreement with the steady-
state theory of Yih (1958), who showed that in these circumstances as F' — =~ uniform
withdrawal will no longer occur. This was confirmed experimentally by Debler (1959)
and using steady-state theories by Kao (1970) and Imberger (1972), who all showed that
for ¥ < =} selective withdrawal will occur, where, adjacent to the sink is a region of
poterntial flow, and immediately upstream of this a constant width withdrawal layer will
form resulting from a balance between inertial and buoyancy forces. This layer will have
thickness

6= (xF)h, 3)

Therefore, the argument of Pao & Kao (1974) incorrectly predicts §. Imberger et al.
(1976) modified this argument by proposing that the n** mode could only propagate into
the duct if its long-wave speed was greater that the average velocity in the withdrawal
layer, ¢/hé. Using this argument gives the correct steady-state withdrawal thickness (3).

Kao (1976) proposed withdrawal criteria for nonlinear stratifications based on a similar
approach to that used by Pao & Kao (1974). He made the long-wave approximation and
showed that when the sink is started, shear fronts would be generated which will propagate
into the fluid. It was proposed that the withdrawal layer thickness can be deduced from
the wavelength of the last mode with long-wave speed greater than the average velocity in
the duct. As shown above this approach fails for linear stratifications, thus we would not
expect that it could be applied to nonlinear stratificatior ;.. However, it should be able to
be used to determine the point of critical withdrawal .r nonlinear stratifications. It is
therefore of interest to apply the criteria of Kao (1976) to the withdrawal a two-layer fluid
through a line sink. Again the fluid has total depth &, with lower layer deptk A1, The
density of the upper and lower layers are po and po + Ap respectively, thus the reduced
gravity is ¢’ = Ap g/po, where g is the magnitude of gravity. The flow rate per unit
width into the sink is ¢, therefore we can define the densimetric Froude number based on
the lower layer depth

e @)
1T g

The long-wave speed of the interfacial mode is (¢'h21(1 - 21))%, where 2; = ky/h, while
the average velocity in the duct due to the potential flow when the sink is turned on is g/A.
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The point of critical withdrawal will occur when. these tvo velocities are equal, therefore
the critical Froude number at which fluid from the upper layer would be expected to be
just drawn dowun into the sink is

1—21

£y (%)

%

2
Flc"’

Note that this value is independent of the height of the sink above the base of the duct.

The critical Froude number ranges from Fy. = 0 for z; = 1 to F;. = 1.41 for z; = } to
Fj. = oo for 23 — 0. These values can be compared against studies of the steady critical
withdrawal of & two-layer fluid through a line sink at the base of the duct, for which Limited
results are available. Huber (1960) used approximate methods to show that when z; = 3
the critical Froude number is Fj. = 1.66, which is in reasonable agreement with (5). When
the upper layer is infinite, or equivalently 2; — 0 while k; remains finite, the average
velocity ¢/h approaches zero. In this limit Hocking (1991a) used an integral equation
approach which suggested that the critical Froude number was Fj, = 0.42. This was
supported by experimental evidence from Hocking (1991b) of a value of Fy, = 0.38. The
hypothesis here, is that in this limit (5) fails due to the neglect of nonlinear effects. This
is apparent if it is noted that for a linearly stratified fiuid with constant upstream energy
Long (1953) showed that the full nonlinear steady problern reduces to a Linear equation
for the perturbation streamfunction. Therefore, the linear model of Pao & Kao (1974) is
able to predict the point of critical withdrawal, since nonlinear effects are insignificant.
However, for general stratifications nonlinear effects are important and cannot be ignored.

Our intention here is to use weakly nonlinear, long-wave theory to study the effect of
nonlinearity on critical withdrawal. In §2 the appropriate equations are outlined, and iu
§3 these are used to study the specific preblem of the critical withdrawal of a two-layer
fluid from a line sink at the base of the duct.

2 Critical withdrawal in the long, weakly nonlinear limit.

It is apparent from the discussion of §1 that the problem of critical withdrawal is
dependent on the behaviour of the first mode, as this is the fastest-propagating mode. If
the first mode can propagate upstream then selective withdrawal will occur, if not, then
uniform withdrawal will occur. The behaviour of this mode will be dependent on the
forcing at the boundary and the potential flow in the interior of the duct. As no other
modes propagate ahead of it, the first mode can be considered in isolation from the other
modes and, also, the upstream flow is uniform over the height of the duct. To examine the
effect of nounlinearity on critical withdrawal we will assume that the first mode is weakly
nonlinear and of long wavelength, which aliows the behaviour to be studied analyticaily.
The limitations of this approach, are that firstly we are restricted tc small amplitudes,
and secondly, as the flow in the vicinity of the sink is radial, ratber than horizontal,
the solutions will not accurately describe the behaviour in this region. We will refer to
the amplitude near the boundary, however it must be remembered that the solutions are
invalid in this region.

To derive the governing equations for the first mode shear front we consider a two-
dimensiopal, incompressible, stratified fluid contained in a duct of constant depth 4, for
which viscosity and diffusivity are negligible. A Cartesian co-ordinate system (hz, hz) is
defired, where x is the horizontal direction and z is the vertical direction, with z = 0

3



being the base of the duct and z = 1 the undisturbed height of the fluid. The undisturbed
density, p(z), is used to define the buoyancy frequency

2 __ _39p:
Nt =T (6)

This, in turn, is used to defire the Boussinesq parameter

hN?

. )
where N is a characteristic value of N. As the fluid is weakly stratified § < 1. The
time is defined as N~¢ and the undisturbed horizontal velocity of the fluid is Nha. It
has been shown by many researchers that weakly nonlinear, long internal waves in this
environment will satisfly the Korteweg-de Vries {(KdV) equation. Following Grimshaw
(1984), for waves with amplitude O(c) and horizontal wavelength O(e!/?), where ¢ is a
small parameter, it can be shown that the density p and horizontal velocity u will satisfy

p(@,2,t) = p(z — A(z,8)8(2) + O()),  u(z,2,t) = Nh(u + UA¢, + O(e), (8)

where U is the long-wave speed in a quiescent fiuid, A is the amplitude of the wave and
¢ is its permanent vertical stucture. L. the limit # — 0, U and ¢ satisfy the vertical
eigenvalue problem

N2
Uzd’zz + 'ﬁ,"z"ﬁ =0, (9)
with ¢=0 on z=0,1.

The amplitude can then be shown to satisfy the KdV equation

Av+ 0l +rAA; + 8Agss =0, (i0)
T [t g3 142
where c=U +1, ,-=§[_Io_9_b1d_z UquSdz

8§ = .
2 [, $2dz ’ 2 [y ¢2dz

In critical withdrawal the velocity in the duct is

= q

U= W = —F 3 (11)
where F' is the Froude number. In the long, weakly nonlinear limit of this problem the
motion of fluid in the durt will be described by (8)-(10), where A and ¢ are respectively
the amplitude and vertical structure of the first mode shear front. However, to fully
describ~ the behaviour we must define initial and boundary conditions for the shear fronts.
The initial condition throughout the duct and the boundary condition at the semi-infinite
end of the duct are both that the amplitude is zero. The boundary condition at z = 0
is found by considering the velocity at this point. For a continucus siratification the
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eigenvalue problem (9) will have an infinite set of solutions, U, and ¢,. The amplitude
at the boundary, A, can be estimated by assuming that the velocity is the sum of these
modes and the initial flow. At z = 0 the fluid must flow out of a line sink at height
z = zg, therefore the amplitudes satisfy

N:‘l (—F + E AnUn¢nzj = "%5(2 - 20)1 (]2)

n=1

where &() is the Dirac delia function. Integrating this equation once and using the
orthogonality condition for the modes gives the amplitude of the n** mode;

- Ffal N’(z - H(Z - Zo))ﬁf’ndz

Aa .
U, Jo N2¢2dz

) (13)

where H() is the Heaviside step function. Hence, the initial and boundary conditions for
(10) are

A(z,00=0 z>0,
: (14)
A(0,8) = Ay =1H§1° A A, =0, t >0,

3 Critical withdrawal of = two-layer fluid.

We now consider the application of the general formulation for critical withdrawal of
§2 to the withdrawal of a two-layer fluid through a line sink at the base of the duct. In
this case 2o =0 and the thermocline is at z = 2;, therefore, the Luoyaucy frequency is

Nt = N%*(2 = z). (15)

This is simply the limit as € — § of the contirmious stratification

2 __ —— o ——
N® = P sech’ pant (16)

Since only the weakly nonlinear lirait is being considered, the following resclts will only
be valid for |25 — | € 1. We will imit our discussion to 2; < %, however, tbe upper
simit of this is not strictly valid. For the stratification (18) it can be shown thai the modal
structure is

oo { 2(1-2)/(1 ~zn) =z2> 2, an
2 z2 <,

and the free long-wave speed is (2:(1 ~ #,))*/*. Thus the long-wave speed is

c=(n(l—z)i-F (18)
5




The nonlinear and dispersive coefficients for the KdV equation are

T = g. (1 ilzl)z (1 — 221), § = %(21(1 — 21))%, (19)

I

and the amplitude of the shear front is

Ay = =Fy(1 = z)%, (20)

where Fj is defined by (4). Note that this amplitude can also be derived by assuming
that if the shear front can propagate away from the sink, it will adjust the uniform flow
over the height of the duct to a uniform flow over the height of the lower layer, with a
stagnant upper layer. For the two-layer fluid this is a more realistic formulation than the
formulation for a continuous stratification of §2.

The solution of (10) and (14) is primarily dependent on the sign of rA;. For rA; <0,
as is the case when z < %, the nonlinear effect is negative and solutions have been
presznted by Marchant & Smyth (1991). If ¢ > —rA; they showed ihat for large ¢ linear
dispersion will not be important, anc. therefore, the solution of (10) is well approximated
by the solution to hydraulic approximation to (10) (i.e. the term Az:. is neglected),
which is

G T > ct,
z ¢ )
A= i (e+rAi)i<z < e, (21)

rh, z < (c+rAq)t.

When ¢ < 0 Marchant & Smyth (1991) showed that as waves cannot propagate away
from the boundary, the solution will rapidly become steady, and is given by

3¢ 2 c\i .
= — —— )
- cosech’ ( 43) (z + zo), (22)

L L L
R o K (€ R oA
) [ L T\ Ti\y

In the range 0 < ¢ < —rA; no solution was found, however an approxirnate solution can
be constructed. Away from the boundary nonlinear dispersion will again dominate for
large ¢, therefore the solution will be (21), however this will not satisfy the boundary
condition at z = @, where linear dispersion must be reintroduced. Sioce (21) is only valid
for large ¢, we can assume that the solution in the boundary region will be steady. Hence,
we can write

0 z > ct,
A=A@+ o o (23)
r—t'—; z < ct.
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Figure 1: Two solutions of (10) and (i4) for c=3, r=—6,s=1, Ay=1 and t =5,
The solid line is the approzimate solution given by (28) and (25), while the dashed
line is the numerical solution of the full equations.

Near the boundary this second part of 4 will be approximately equal to ~c¢/r, in which
case, to leading order, A" satisfies
rA'A, + AL, =0, (24)
with
A(0) = Ay + g lim A', 4, = 0.
This has the solution

/ z) = @
4@ (1 + (—ra/12s)z)?’ )

where a=A; + E

An example of this approximate solution to (10) is shown in figure 1, together with the
equivalent numerical solution of (10). The numerical solution is obtained using the finite-
difference method of Chu et al. (1983). The discrepency between the two solutions at
large x in the region of the front is due to the fact that linear dispersion is ignored away
from the boundary in the approximate solution. As time increases the front propagates
further away from the boundary, and thus for very large ¢t the solution A will consist of
a constant level away from the boundary of height —c/r, with a dispersive solution near
the boundary to match this to the boundary condition.

7
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With the problem of two-layer withdrawal this intermediate solution can be thought
of as a partial shear front, as it will modify the uniform upstream flow, but will not lead
to selective withdrawal from the lower layer. The final solution, which has greater velocity
in the lower layer than the upper layer, we will term partial withdrawal. Therefore, there
are three withdrawal regimes: for ¢ < 0 uriform withdrawal occurs, for 0 < ¢ < —rA,
partial withdrawal will occur, and for ¢ > —rA;, when the full shear front can propagzte
upstream, selective withdrawal will occur. It can be shown that for the geometry being
considered here, partial withdrawal will occur when the Froude number satisfiex

2(1 — 2t <F< (1 —21)%‘

3 - 421 21 (26)

It can be seen that the upper limit for F} is equal to (5), the value found using the criteria
of Kao (1976). When 2, = } the upper and lower limit are equal and, therefore, the point
of critical withdrawal is F} ~ 1.41, in agreement with Kao (1976). This is due to the fact
that r = 0 and, hence, nonlinear effects are insignificant. When z; — § the lower limit,
which is the point of critical withdrawal, is F) = %, which is now in reasonable agreement
with the results of Hocking (1991a,b).
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DENSITY INTRUSIONS WITH LARGE RELATIVE T/ I'CENESS

Steven J. Wright and Diana Paez-Rivadeneira
Department of Civil and Environmental Engineering,
The University of Michigan
Ann Arbor, Michigan 48109-2125

Abstract

Previous analyses of density intrusions indicate that only relatively thin
intrusions are allowed in order to satisfly a momentum balance at the currert head.
These constraints can be relaxed somewhat by varicus medificaiions to the basic
theory, but are inconsistent with experimental observations indicating intrusions
that occupy nearly the entire flow depth can be produced. An alternate theory of
density current propagation does not possess these restrictions on intrusion layer
thickness and provides a more satisfactory explanation of experimental
observations. New experimental results are presented to corroborate this
interpretation.

Introduction

The propagation of density intrusiors has been previcusly analyzed with a
variety of one-dimensional analvses which predict the propagation velocity as a
function of the layer thickness and density difference. Most are based on the work of
Benjamin (1968), who formulated a momentum balarce in a frame of reference
moving with the front. He showed that energy dissipation must generally be
present at the density current head and assumed that it was confined to the
continuous layer above the density current. Benjamin also showed that the
requirement for no energy gain in the direction of the flow limited the intrusion
thickness to o more than one-half the total flow depth. He also suggested a more
restrictive criterion that the reiative thickness could not exceed 0.347; this was later
shown by Kranenburg (1978) as a nocessary condition for maintenance of the
discontinuity {shock) at the density current front. Wright (1986) observed density
currents with thicknesses considerably in excess of either one of these limits. The
analysis by Kranenburg (1978) also considered the possibility of energy loss within
the density current bead; this allows for a greater intrusion thickness while still
retaining the requirement for maintenance of the shock. Wright, ot al (1890)
showed that a large variation in Kranenburg's energy loss coefficient is necessary to
expiain experimental observations. Subsequently, Kranenburg (1993) proposed a
revision to his original model and suggested that a constant loss coefficient would be
adequate to describe most observations. It can be shown that Kranenburg's revised
model also requires a nouconstant loss coefficient both for the origingl experiments
by Wright (1986) and in additicnal experiments conducted since that time. It is also
found that the condition for maintenance of the shock does not hold for some of the
recent experimental results. These results are, however, consistent with the
minimum energy model proposed by Wright, et al (1990).
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2 Wright and Paez-Rivadeneira

Experimental Resuits

Most previous studies have only repurted visual layer thicknesses and
observed front speeds. The present experimenta) resulte include measurement of
the vertical density profils behind the current head in addition to observed frontal
gpeeds. Figure 1 presents a general schewnatic of a density current. Uy is the front
speed, h{ is the intrusion thickness behind the currer.: head and H is the total depth.
Velocities relative to the current head are veguired siuce previous models analyze
the flow in a frame of reference moving with the intrusion. Cj is the approach
velocity when the current head is brought to rest, whi’:: Cg is the upper layer velocity
in the same frame of veference. From Fig. 1, C1= Ut - oH and Cy = U -qatha withq
= G1 + G2, Q1 the intrusion discharge, and gz the flow in the continuous layer above
the intrusion {(positive if in the same direction as the deusity cuarent). Additional
parameters used in the discussion below are the discharge ratio gr = g2/qy and the
relative intrusion thicknessn =hy/H. The following deSnitions for the layer
properties are made from the measured experimental data:

, H
A
gh = Jg f‘dy (1)
0
H
.hz A
o5 - [a%2yay @
0
q1= Uthy ()
qQz=9q-q1 (4)

Here Ap is the density difference hetweern the intruding and ambient fluids and y is
distance from the boundary along which the intrusion propagates.

N2

= [

h qzlhz p

Figure 1. Schematic of Density Current.

Experimental results for density currents were presented by Wright (1986) for
both counter-flows (qr < 0) and co-flows (gr > 0). This investigation focused on mixing
in dense, horizontal discharges and the density currents resulted from initiation of
the dense discharge along the horizontal channel bottom. The density excess was
created by chilling salt water; racks of thermistor probes at selected locations along
the channel provided continucus records of vertical density distribution with time.
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3 Wright and Paez-Rivadeneira

The channel configuration involved an overflow weir at the downstream end to
maintain a constsnt depth so there was a net throughflow in all experiments.
However, the mixing in the source discharge produced an upstream flow in the
ambient fluid to satisfy the entrainment demand. Later experiments included an
ambient fluid flow created with a recirculating pump; the near source mixing still
resulted in a net upstream flow in many of these experiments. The experimental
design did not allow for large variations in qr but many of these experiments

involved quite large values of 1}, up to a maximum of 0.8.

Upon analysis of this original set of dats, it became clear that more useful
results could be obtained by minimizing the near-source mixing and varying g over
a wider range. An additional series of experiments were parformed with salt water
intrusions in a 10 m long flume equipped with a pamp to circulate the fluid in the
upper layer. An overflow weir at one end of the flume was used to control the water
level. By locating the salt water discharge at one or the other end of the flume, both
co-flows or counter-flows could be established. The g, ratio could be easily controlied
with this experimental configuration. Zero recirculating pump discharge resulted
in the commonly studied cases of starting flow (qr = 0) and lock exchange flow (q; =
—~1) with the discharge gate at the opposite or same end of the channel as the
overflow weir, Density profiles were measured approximately 1 m behind the
density current head at a location 4-5 meters downstream from the discharge gate;
there the depsity current was well defined and the influence of the large starting
vortex formed as the flow was initiated was no longer apparent. Results from these
experiments were previousiy reported by Wright, et al (1990). In general, it was
difficult to produce large values of n with this experimental configuration.

A final set of experiments similar to these is now underway in which the
discharge gate has been modified in an attempt to produce larger values of 7.
Preliminary results have been obtained for starling and lock exx:ha.nse flows with
future experiments to be paerformed with the recirculating pump in order to vary qy
over a wider range. It has still been difficult to produce large density current
thicknesses without also allowing near source mixing, so future experiments may
also require this additional modification.

Rackground

Kranenburg's (1878) modification of Benjamin's (1968) analysis gives the
density current speed as a function of the fractional layer thickness as

S ,\j W(1-)(2-n) -
VgH 149 + k(1 - 1) '

where k is a loss coefficient estimated by Kranenburg to have a magniutude of 0.6.
Eq. (6) is derived from a momentum balance in the relative frame of reference
moving with the current head and with the assumption that the nose of the density
curreat at the chaunel bottom is a stagnation point. It also requires the assumption
that energy dissipation at the density current head within tke intruding layer is
given by kpC12/2. Kranenburg (1893) modified the dissipaticn term by adding an
additional term which ke deduced to take the form

AE = g(k €12 + (1+k)Cq -f;}) (6)
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4 Wright and Paez-Rivadeneira

so long &s the boundary layer effects for flow over the boundary along which the
intrusion propagates can be neglected. Regardless of which expression is used, the
effect is to predict a siower, thicker density current for a given source condition.
This is consistent with experimental cbservations in that Benjamin's analysis
predicts larger than observed propagation velocities for miscible intrusions.

In order to completely analyze density current propagation, Kim and Wright
(1987) attempted to define limits on physically admissible solutions; an example is
the constraint by Benjamin (1968) that the requirement of no energy gain in the
direction of flow limits solutions to 1 < 0.5. Kranenburg (1978) developed a criterion
that requires the flow in the layer above the density current to be subcritical, or at
most criticel with respeet to the density current itself:

Cp2 (Ug - up)?
gha =  ghp = 1 ]

Eq. (7) is necessary in order to maintain a sharp intrusion front. Benjamin's
solution, Eq. (6) with k = 0, satisfies Eqg. (7) 80 long as 1 is less than 0.347. Chooaing
a positive value for k in either Eq. (5) or (6) results in a larger admisaitle value of 7.

Hoewever, Wright (1986) showed that steady density currents with 7 far in excess of
0.347 could be produced (& maximum value of 0.8 was obtained in those experiments
and this was apparently only limited by the experimental conditions selected).
Kranenburg (1993) suggested a value for the loss coefficient k of 0.6 and presented a
comparison with the data from Wright (1988) to partially justify this choice.
However, the manner in which the comparison was made was misleading in that

his resulting expression for C1 was used to solve for the intrusion thickness m while
substituting observed intrusion thicknesses for some terms in the soluticnn. Leaving
the intrusion thickness as a computed variable in all terms results in much less
satisfactory agreement between observed and predicted layer thicknesses. Solving
Kranenburg's expression for individual values of k for each experimeni (using
observed front velocities and layer thicknesses) resulted in one value in excess of 100
for an experiment that was considered to be verification of the analysis; several
other experiments indicate k values an order of magnitude greater than 0.6. A
presentation of the k values estimated from Eq. (5) for the data of Wright, et al (1990)
is presented in Fig, 2 as a function of q; while the k values considering the energy
loss as given by Eq. (6) are presented in Fig. 3. This large and apparently systematic
variation in the loss coefficient raises the possibility that either an alternate
expression for the energy loss is required or that the density current propagation is
coutrolled by some other principle.

These approaches fail to adequately describe the observed density current
propagation for cases of relatively strong co-flow as experimental observations
indicate that demsiiy currenis propagaie much more siowly than predicted by
Benjamin's theory and a large loss coefficient is necessary to describe the
experimental results. Also, large 1 experiments tend to require larger loss
coefficients. This finding ied Wright, et al (1987) to forsake the momentum balance
at the density current head and to suggest that the density current propagation
velocity is constrained to be no greater than the long wave speed of an interfacial
disturbance. The notion behind this concept requires that dissipation at the
carrert head adjusts to the level necessary to satisfy this condition, in which case
the loss coefficient must vary consistently with qr and n. However further
investigation for the strong co-flow results indicated that the density currents were
supercriiical in an absclute frame of reference although not nearly as much as
required by Eq. (5) or the equivalent modification utilizing Eq. (6). This observation
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5 Wright and Paez-Rivadeneira

led to an alternate derivation of a "critical” flow state by minimizing the total energy
flux in the two layer flow subject to the requirement that the total depth remain
constant across the intrusion front (Wright, et al, 1990). In terms of the density
current propagation speed Cj, this analysis yields

C n(1-n)3
\FQW = [1-(1+Qr)n]'\/(1 - 1)3 - q;3n3 (8

Eq. (8) has been found to describe experimental results for intrusions in miscible
fluids and has the advantage that no empirical coefficients are required to fit
observations. In particular, the need for a highly variable loss coefficient as
indicated in Figs. 2 and 3 is obviated. Wright (1286) suggested that Eq. (7) could be
applied as a general constraint without regard to the application of the momentun
balance. Eq. (7) (satisfying the equality) can be rewritten in terms of C, as

:%.—“'— = V(1) @)
g'H

Wright, et al (1990) suggested that whichever of Egs. (5), (8), or (9) predicts the most
severe constraint on density current propagation (i.e. the slowest propagation speed)
would prescribe the intrusion characteristics. However, the data from Wright

(1986), particularly for co-flows and large n appear to contradict this assumption.
There is, however, considerable scaiter in the experimental results and this led to
the current round of experimentation in an attempt to resolve this issue.
Experimental Resulie
Initial data were collected in a starting flow (q, = 0) configuration with
an attempt to collect data that be constrained by Eq. (8). Kranenburg (1893)
suggested that density currents with a thickness greater than that prescribed by Eq.
(9) would be unsteady and subsequently collapse to a smaller 1 in order to attain a
steady frontal condition. However, this was not observed in the experiments and the
90
80 7
70 ¢
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30 1 o
20 t¥ o
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Figure 2. Loss coefficient vs. qr for Kranenburg‘s {1978) model computed from data
from Wright, et al (1390). :
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Figure 3. Loss coefficient vs. q; for Kraxenburg's (1998) model computad from data
from Wright, et al (1990).

propagation conditions were more or less constant along the length of the channel.
All density currents are subject to bottom and interfacial shear and thus slow down
as they propagate along a horizontal channel. Although this effect is relatively
small, it does complicate the interpretation of whether a density current would be
steady in the absence of shear effects. However, the presentation of distance vs, time
observations in Fig. 4 for typical intrusions that are supposedly constrained by Eq.
(8) compared to those that are not indicates that the two situations are not
discernibly different with regard to the unsteadiness of the flow.

Another way of examining the results is in terms of the non-dimensional

propagation velocity C1/Vg'H . The predictions of Eqgs. (5) (with k =0), (8), and (9)
are presented in Fig. 5 along with the data from Wright, et al (1990) and the current
experimental results for both qr = 0 and -1. Using the definitions of g1 And g2 in
Egs. (8) and (4) makes the starting flow q; values slightly less than zero and not the
same in all experiments while the lock exchange flow data are for qr exactly equal
to -1 with this definition. These results indicate that the deusity current propagation
speed is not independent of the ambient velocity as required by Ey. (5). Al;though the
expression of the energy loss by Eq. (6) makes C; dependent ¢n the ambient velocity,
the presentation in Fig. 8 indicates that a variable loss coefficient is required to
deseribe the experimental results. The gensral trends predicted by Eq. (8) are guile
well indicated by these data, especially considering the uncertainties introduced by
the non-uniform velocity and density profiles. An additional finding from the
present experiments is that Eq. (9) apparently does not provide a constraint on
density current propagation as initially hypothesized. This conclusion is
prelimi due to the limited range of experimental conditions investigated, but

the experimental results do follow the predictions of Eq. (8) beyond the limits of n
imposed by Eq. (9). A similar conclusion was obtained by Wright and Paez-
Rivadeneira (1994) in a re-anrlysis of the data by Wright (1986). That interpretation,
however, was hampered by tue scatter in that data set. The current data are for a

much more limited range of qr and i values but are for more carefully controlled
discharge conditions.
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Figure 4. Typical density current propagation histories for starting flows: 8.) 0
greater than Eq. (9) prediction; b.)  less than kEq. (9) prediction.
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Figure 5. Experimental data for non-dimensional density current propagation
speed compared to various analyses.

The data in Fig. 5 do indicate that Eq. (5) may be valid when it predicts a
slower propagation speed than Eq. (9). This is reasonable since the faster
propagation speeds predicted by Eq. (9) would require a negative loss coefficient or
an energy gain at the intrusion front. Since this would not be ghysically possible, it
appears that Eq. (5), posaibly with a small loas coefficient should describe the density

current propagation. Because of some uncertainties in the experiments of Wright,
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et al (1990), additional experiments will be performed for strong counter-flows to
more clearly delineate this issue.

Conclusions

The experimental results presented in this paper serve to confirm that
Benjamin's (1968) momentum balance is not generally a useful model for anaiyzing
density current propagation. In pariicular, density currents with thickness in
excess of the limits proposed by Benjamin can be created. Although Benjamin's
analysis can be modified by consideration of energy dissipation at the density
current head, this formulation requires a variable loss coefficient in order to
reproduce experimental results. Also, the constraint on the mazimum intrusion
thickness suggested by Kranenburg (1978) appears not to govern density current
propagation for moderate co-flows and counter-flows. On the other hand, a
formulation based on minimum epergy principles describes the present as well as
previous exﬁrimental results. The only exception appears to be for strong counter-
flows in which Benjamin's momentum balance prescribes a slow propagation
velocity than the minimum energy formulation. Additional experimentation is
underway to more thoroughly investigate this issue.
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Abstract

The experimental and numerical analyses of flow development caused by the in-
jection and withdrawal of multiple fluid layers in a stratified environment are
presented. The injection of positively, neutral and negatively buoyant fluid lay-
ers was studied experimentally and an analytical approach was developed which
considers temperature-stratified, salinity-stratificd and doubly-stratified environ-
ments. A comparison of experimental and numerical data chowed good agreement.
The present expervimeatal and numerical analyses demonstrate the feasibility of
injecting and withdrawing several buoyant layers while preserving stable density
stratification in a double—diffusion environient, such as would be found in a solar
pond.

1. Introduction

Laminar or transitional (from laminar to turbulent) jets have not been investigated
widely because flows inside and around a jet are usually turbulent. However, in
a few particular cases laminar flow is needed in order to provide desirable fiow
conditions and maintain ambient fluid stratification (e.g., Kaghazchi, 1988). One
particular application is the injection of a laminar jet or system of laminar jets
s proposed for advanced solar pond (ASP) techuology (e.g. Osdor, 1984; Rubin
and Bemporad, 1589) in order to increase solar pond efficiency. Creation and
maintenance of a so-called stratified flowing layer (SFL) in the bottom part of
the solar pond gradient zone requires the simultaneous injection of several flowing
layess of different temperature and salinity.

Only a few experimental studies are available on laminar jet injection and these are
concerned with a salinity stratified environment (Manins, 1976; Maxworthy, 1972).
Flow visualization from these studies shows that jets with moderate Reynolds
numbers (Re = Ud/v) propagate without significant vertical spreading, which is
obviously suppressed by the stratification. Therefore, ambient fluid entrainment
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into the jet body is low and molecular diffusion is the basic phenomenon which
characterizes the transport of properties across the jet boundary. Tests were not
conducted for temperature or double-diffusive (D-D) stratification. In particular,
the SFL of an ASP has "diffusive” D-D stratification and phenomena associated
with this condition should be considered. In addition, the injection and simultane-
ous withdrawal of a system of laminar layers has not been investigated sutficiently
and it is not clear & priori how this type of system should operate.

In the present research an experimental study was conducted to evaluate the be-
havior of a laminar two-dimensional horizontal jet or system of several jets. It
was desired to determine the influence of buoyancy force, double-diffusive effects
and simultaneous operation of (horizontal) injection and withdrawal procedures
on jet flow in single (temperature or salinity) and D-D stratified environments. A
numerical model based on a Lagrangian approach was also developed and tested
in order to simulate the propagation of the jet front. Some results from this study,
particularly related to single jets, are described by Priven (1993) and Priven et
al. (1994a, 1994b). Results relevant to the present paper may be summarized as
follows:

a) a stable flowing laminar neutrally buoyant (with respect to ambient strati-
fication at the injection/withdrawal level) layer can be created and maintained
without significant mixing between the layer and ambient fuid;

b) any difference between injected and ambient fluid properties (at the injection
level) leads to vertical movement of the jet, causing flow to the withdrawal port
to be limited to a relatively restricted region above and below its location; as a
result, the thickness of the jet increases due to mixing with surrounding fluid and
ambient stratification may be affected;

¢) horizontal injection of a neutrally buoyant D-D jet into a D-D stratified envi-
ropment will exhibit vertical motion unless the jet properties are the same as the
corresponding properties of the surrounding fluid; the jet deviation (from horizon-
tal) in this case has a double-diffusive nature and depends on the magnitude of
the salinity or temiperature deficit; and

d) the Lagrangian approach provides a simple and effective means for calculating
jet trajectory,

The present study extends the analyses of Priven et al. (1994a, 1994b) 1o exam-
ine multiple layer injection. The single-jet results indicated that the withdrawal
procedure was a critical factor in determining resuliing flow patterns. This was
particularly true for D-D jets. In the present study multiple laininar jet injection
into a salinity-stratified environment is examined. Flow observations are reported
in Section 3 and the applicability of the numerical model to the multi-injection
system is discussed. in Section 4.
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2. Experimental Set-up and Procedure

The laboratory set-up consisted of a flume whose length, width and depth were
320 cm, 60 cm and 100 cm, respectively. The entrance unit contained a series
of outlet ports, or slots. Each slot was 56.0 e wide and 2.0 em high, and flows
to each slot were monitored with a system of flowmeters. The main withdrawal
port, 6.0 cm high and with the same width as the entrance slots, was positioned
at the downstream end of the flume. The vertical dimensions of the cutlets were
calculated on the basis of Imberger’s (1972) experimental study of two-dimensional
sink flow. The system was operated in such a way that the the total outlet flow
was always equal to the total inlet flow.

A linear ambient gradient was set up by slowly filling the tank in a series of
thin layers in which different salinities (and temperatures, if a D-D gradient was
desired) were determined by controlling the discharges from tanks with different
concentrations (and temperatures). Density gradients were measured by slowly
withdrawing fluid samples at a given height and measuring specific gravity with a
hydrometer. The experimental uncertainty in the density measurements was 1.0
kgm™3. The injection and filling discharges were measured by flowmeters with
an estimated accuracy of 2%. Temperature profiles were measured by using 16
thermocoupies fastened on a fiberglass bar and connected to a data logging unit.
Calibration of temperature measurement showed that the expected accuracy is &
0.3°C. Further details of the experimental set-up and procedures may be found
in Priven (1993).

3. Experimental Observation

For purposes of illustration of the essential features of the observed fiows, two
representative tests are chosen, termed MJS2 and MJS3. Table 1 presents the
main characteristics for each of these experiments. In this Table Ap = po; - pj
(kgm=3) is the difference for each sublayer between the injected fluid density (p])
and the density of the ambient fluid at the injection level (p, ;), G, (kgm™1) is
the density gradient, v; (cmsec™?) is the injection velocity for each sublayer, F'r
and Re are the Froude and the Reynolds numbers for each sublayer, respectively.

Experiment MJS2 was characterized by injection of two neutrally buoyant fluid
layers (1 and 3), with equal flowrates. The injection was performed from the upper
and the lower slots; no fluid was discharged through the middle slot. Figure la
illustrates the propagation of both jets with time. Initially the two fluid layers
flowed with the same velocity, and propagated into the tank at the same distance.
Later, the upper fluid Jayer accelerated and started to move more rapidly than

3
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Run Layer Ap GQ vj Fr Re
MJs2 1 0.0 714 C.4 - 100

2 - - - -

3 0.0 0.4 - 100

MJS3 1 0.0 84.0 0.5 - 125

- 5 — — ~ ~
3 -0.1 0.6 0.4 150

Table 1: fluid layer and ambient fluid properties
the lowsr lager. This acceleration was accompanied with a corresponding decrease
in thickuess (about 2 ¢cm, compared with about 4 cm for the lower ”slug”), as deter-
mined {rom photographs of the flow. Therefere, although both fluid layers were in-
jected into the same stratified environment with the same velocities, both with neu-
tral buoyancy, the characteristics of the fluid propagation for the two jets were dif- _
ferent. This behavior is assumed to be a direct result of the selective nature of the |
withdrawal procedure. 5

T, ad L —0 ,
Upper jot— e 8 Upper jet :
o~ . - N e 3
5 100 h/& ."’ gma = - .'
% AL % | i B
o » P F) ¢ t
& . 9 .
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s L & u=0.40 cm/scc . Au=0.60 cm/sec
10 4 ; 16 :
10 100 1000 10 100 1000
Elapsed time (sec) Elapsed time (sec)

Fig. 1. Slug length versus elapsed time for MJS experiments. a) MJS2; b) MJS3

Similar results are shown in Figure 1b for experiment MJS3, where the velocity of
the upper fluid layer was kept smaller than the velocity of the lower layer (0.5 cm/s
and 0.6 cm/s, respectively). Fiuid was discharged in the same manner as in the
previous experiment. The upper layer had neutral buoyancy, while the lower ’
layer density was somewhat smaller than the ambient density; this modification
was introduced to force the jets to flow paralle]l and as close to each other as
possible. Both figures show the development of slug length consistent with a result
by Maxworthy (1972), which correlates laminar slug length with time as [ = #5/8,
. Our experiments show that this prediction is cosrect at least in the region where
jet flow is not influenced by the end wall and withdrawal port. After that point
the slug propagation is slower. Figure 2a shows flow visualization for experiment
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Fig. 2. Flow visualization for experiment MJS3. a) dye trace movement during
injection (region close to the entrance uwit); b) jets close to the withdrawal port.

MJS3 in the region close to the entrance port. Here, two sharp velocity profiles
indicate that the layers were not mixed. From Figure 2b it is apparent that the
jets flow without any mixing at the region close to the withdrawal port (at right
edge of photo). As in the previcus experimental run, after about 83.0 seconds
the lower layer has moved about 100.0 e, while the upper layer has moved about
80.0 cm (see Fig. 1b). It may be intcresting to note that the thickness of the upper
layer was about 2.0 em, while the lower layer thickness changed from 2.0 cm at tae
injection to about 3.0 cm at the end of the injection process. Comparison with the
experiments for single jet injection and withdrawal indicates that the upper layer
essentially behaved as a neutrally buoyant fluid injection (Priven et al., 1994b).
Instead, the lower layer behaved like a fluid layer of negative buoyancy which could
not leave the tank and as a result its thickness increased. Therefore, even if the
upper layer had a lower initial velocity, it accelerated and this mey be explained
by existing conditions at the withdrawal port.

4. Numerical Model

A mathematical model was developed earlier (Priven, (1993}, Priven et al., (1994a)}
to analyze the general behavior of a low Re, two-dimensirual buoyant jet in a strat-
ified water body. The model routes the injected fluid lzayer through the domain
of interest by sclving, in a local reference frame, the equations of conservation of
mass flux, momentum flux, beat and salinity flux. The model assumes presswe
variations from hydrostatic te be negligible, and includes entrainment, diffusion
and dissipation terms. In this framework the equations expressing conservation of
mass fux, momentum flux, heat and salinity fluxes are:
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mass (continuity)

2 (edivl) = 2004lv] &)
dg
momentum J
= [edivivs] = —2eCplvI* %
& v I
d - 20y La=e
E[gdlvlvy] - _2QCDIV| Ivl + e d g s
heat and solute transport
d T-T,
2 (0dvIT) = 200,lvIT, - 20,52 L =T2)
« G d (3a—0)
d — (C — Ca)
&z(ngC’) = 200, |v|Cqa — 2g26¢C y

were ( is the axis of the local reference system, kr and kg are the thermal and
solute diffusivities, g is density, d is jet thickness, « is an entrainment coefficient.
The set of equations (1-3) is completed by the following equation of state:

o(T,C) = o[l = (T ~ To) + Bc(C — C,)) (4)

wheie B and B¢ are the thermal and solutal expansion coefficients, respectively,
and subscript , refers to a reference state. Egs. (1-3), together with eq. (4),
represent a nonlinear system of six equations in the six unknowns g, vz, vy, d, T
and C. The fluid layer is discharged at vertical position Y;, with jet width d;, initial
velocity v;, temperature I; and solute concentration C;j. The fluid is injected
into an ambient environment with linear temperature and solute concentration
gradients G and G, respectively.

The numerical model was validated with results obtained from experiments on
single laminar jet injections into temperature, salinity or D-D stratified environ-
ments. Comparison of numerical and experimental results demonstrated the ca-
pability of the numerical model to coriectly simulate the jet trajeciory (Priven,
1993). However this model does not simulate an ambient flow. Figure 3 shows
the jet trajectory and density development for an initially nonbuoyant jet injected
into D-D stratified environment. The injected fluid had lower temperature and
salinity concentration than the ambient fluid, though the jet was initially at the
same density as the ambient environment. Therefore, entrainment should not
be important immediately after injection, however, some vertical deviation is ex-
pected due to diffusive effects. As seen in Figure 3a, the jet starts to deviate
at a distance of about 1.0 m and at the same distance density decreased due to
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heat flux aczoss the jet boundary. At a distance of 100.0 m the jet trajectory and
density variations were stabilized. Ini the case of a system of layers turbulent mix-
ing between the layers should not occur except perhaps in the region close to the
injection slot, where momentum flux is important. Downstream, only D-D effects
should influence the jet flow. Therefore, it is suggested that in the case of initially
novbuoyant jets the current model developed for single discharges may be used
to simulate the system of multiple injection by simply running the model concur-
rently for each jet. Several simulations of this type have been run for three parallel
neutrally buoyant jets, but further work is needed to investigate buoyancy effect.
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Fig. 3. Numerical simulation of initially nonbuoyant laminar D-D jet injected
into D-D stratified environment. a) Jet trajectory; b) density variation

5. Conclusions

The experiments have shown that a system of multiple laminar flowing fluid layers
can be created and maintained in a stratified environment without significant
mixing between the layers. Some mixing may be experted near the entrance when
the injected fluid is not at the same density as the ambient fiuid, due to bueyancy.
In the case of double-diffusive stratification some vertical movement and mixing
is expected at some distance d. wnstream of the entrance, due primarily to the
relatively fast diffusion of heat. The initial propagation of the injected layers
follows t3/%, as first suggested by Maxworthy (1972). However, the propagation
speed decreases as the flow approaches the far wall and here, the specific location
of the withdrawal slot has an important effect on the downstream flow patterns.

It was found that the flow pattern of the multiple injection system was bzsically
similar to that of single layer injection. Therefore, the numerical model developed
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for single jets, based on the Lagrangian approach for routiug the leading front
of the discharge, should be applicable for multiple injection, by solving the model
concurrently for each individual discharge. This is useful for design and simulation
of ASP operations. Optimal control of the multiselective injection procedure re-
quires that the withdrawal port should be designed so that fluid may be withdrawn
from any depth within the siratified flowing layer. This characteristic will proba-
bly have to be accomplished by providing each layer with a separate withdrawal
port and a separate pumping system.
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AXISYMMETRIC INTRUSION IN A STRATIFIED FLUID
Nikolas E. Kotsovinos
Democritus University of Thrace,

67100 Xanthl,Greece
1. INTRODUCTION

A number of environmental flows can be approximated by the flow of a
buoyant plume in stratified environment, e.g. the flow from a sewage
outfall in a stratified sea, or the flow from a chimney in a stratified
atmosphere. In those cases, the buoyant plume rises as high as its
momentum and buoyancy will carry it and then it spreads horizontally at
its neutral level.

Previous experimental studies of horizontal spreading due to
continuous release of a constant flow rate refer ) to axisymmetric
surface spreading of a buoyant fluid in homogeneous non-moving ambient
fluid (e.g- Chen and List (1976), dster and Kerr (1989)) 1) to the
spreading of a heavy fluid on the bottom of a light fluid reservolr (e.g.
Didden and Maxworthy 1982, Britter 1979, Huppert 1982) i) to
two-dimensional inftrusion in a stratified fiuid due to a finite volume
relcase at neutral level (Cerascli 1978, Maxworthy 1872). To our
Knowledge, the only available experimental results which represent the
axisymmetric Intrusion in a staatified fluid due to continuous inflow
are those of Zatsepin and Shapiro (1982}, wno, however, study only the
viscous-buoyancy regime of tha intrusion.

Theoretically,the  axisymmetric lateral growth of ithe submerged
spreading In a straiffied environment has been studied by Chen
(1980),Zatsepin and Shapiro  (1982),lvey and Blake (1985),Didden and
Maxworthy (1982},and Uster and Kerr (1989).

All these Investigators f%ind that at large times thete Is a
balance botween the Interfacial viscous forces and the buoyancy ( or
pressure ) forces and that at this regime1 }Ee radius R{) of the
spreading layer increases with time t as t /%, For smaller times
inertia forces are important and therefore there must be an asymptotic
regime which Is characterized by a balance of the Ineria and buoyancy
forces;experimental data do not exist for this rlqgime but theoretical
studies predict that in this regime R -~ t where m=1/2
according to lvey and Blake ~385), m=2/3 according to Chen (1980),and
in=3/4 according to Didden and Maxworthy (1982). One of inhe
contributions  of this paper is to clarify this confict for the proper
radial growth in the inertia-buoyancy regime .

2,  ANALYSIS OF THE PROBLEM
2.1 Continuity equation

It is assumed that the buoyant plume impinges viclently i#s neutral
stability level, overshcots and then descends and spreads horizoritally
(see ~igure 1j. it is reasonable to distinguish two regions [ the
impingement region within the control volume ABCD whers the flow is in
general very turbulent and is characterized by a lot of entrainment and
i) the main spreading region which Is ocutside the control volume ABCD.
On the average the entrainment in the region ABCD is proportional to the
flowrate Q so that in general the radlai (horizental) volume fiux is cQ
where ¢ Is a constant larger than one which depends on the flow and
stratification paramoters.This constant clearly tends to one when the
buoyant plume impinges with very small vertical momentum is neutral
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density level and increases with increasing the vertical impinging

momentum. The flux of the entrained fluid in the spreading layer
outside the region ABCD ( see Fig. 1) is a small fraction of the
flowrate cQ and therefore we may assume that to the first

approximation the conservation of mass gives:
Velume of spreading fiuid outside the control volume ABCD = ¢Qt

It we assume that the typical vertical and horizontal extent of the
intruding fluid are H and R respectively, then the continuity equation

gives »
HR® ~ Qt {2.1)
2.2 VERTICAL MOMENTUM EQUATION

By integrating the vertical component of the momentum equation over
the spreading patch and by neglecting small terms (i.e. change of
vertical inertia) we obtain the physically expected result that the totai
weight of the slug balances the totai pressure force which acts on the
siug surface S, i.e.

J py () gngdv = J PO ds (2.2a)
v S

where psﬁ(’) is the density at any point X within the slug and p(?) is

the pressure at any point R at ths interface of the slug due to the
hydrostatic ambisnt pressure ; n() Is the unit vector perpendicular
to the surfacs,and n3(x) Is its wvertical component. Since the

hydrostatic ambient pressure depends on the ambient density profile (
and the depth), it is clear that equation (2.2) imposes a relationship
between tha density of the slug and the amblent density.

Although the density within the siug is not known, we may assume that to
the first approximation the density within the slug varies linearly with
the depth. It is assumed also that the ambient density varles also
linearly with the depth, so that it Is easy lo integrate equation
(22) In a slug of constant depth H and radius R (see Figure 2) to find
the following relationship between the ambient and slug densities:

Pay * Pat = Py *+ A (@3a)
where Pgy and p, are respectively the  densities of the ambient fluid
at the upper and lower interfacial layer of siug, and P, and p are

respactively the densities at the upper and ilower Iinterfacial layer
within the slug. Similar equations to eguation (2.3a) can be found for
various combinations of ambient and slug densily profiles.For example
assuming that the density of the fluld in the slug is constant and
equal to e, and linear ambient stratification than # ls easy to

find that

" it is interesting to notice that equation (2.33) Implies
at

PaPy*PyPay l.e. since Pg)> Py We must have Pu>Pau

le. the upper region within the slug has a density smailer than the
density of thes arnbient fluid. This is interesting because it Indicates
that the upper region of the slug is locally in unstable stratification
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l.e. the gradient Richardson number is negative,but the lower region
is in stable stratification. Probably this explains why visual

observations indicate that the lower region of the slug is smoother
than the upper region.

Following Barenblatt (1978) and assuming linear densities
profiles  within  the slug and in the amblent fluid , it is easy to
calculate the pressure distribution ingide and outside the slug and the
excess horizontal pressure force F, which drives the spreading :

Fo- p'gH R (2.4)
where p' o= (pu - pau]/ 6 (2.5a)

The horizontal pressure force F_ which drives the intrusion s
usuglly called “buoyancy * force ,and it Is dus to the “squeezing
vertical forcas exerted on the upper and iower horizontal surfaces of
the sA{legt..lming linear  ambient density stratification but ccnstant

density pg within the slug,then the driving buoyancy force s

given again by equation 2.4 with
23. HORIZONTAL. MOMENTUM EQUATION-SCALING ANALYSIS

The methodology thal we will foliow to find the asymptotic
growth rate of the radius R({t) with time is basad on the balance of the
forces, which drive and retard ths flow. Similar methodology has been
;:sed previcusly by Chen and List (1976) and Didden and Maxwoithy
(1978) .

The forces which drhive the flow are two: the initial radial

moment.im MR flux out of the control volume ABCD {see Fig.1) and the

pressure  force Fp.The forces, which retard the flow are also

twoithe inertia of the slug fluld and the Interfaclal drag which s
exerted by the ambient fluid on the intruding fluid.

Subsequently we find the scaling of the above mientioned iorces,
where the continuity equation (2.1} has been considered and where the
typical horizontal velocly U within the intrusion Is given by R/twhere
t is the time We assuma that t=0 when the vertical piume reaches its
neutral density level.

F, = rate of change of the inertia of the fluld within the

slug =0(p R2H %) =00 Rat™) 2.5)
F, = pressure force = O(p'gH2R)= OE'gaR3A) ©.6)
Fen = laminar interfacial shear force =
T oerPH Y = opra ! 13 @7)

We consider below the following four regimes of the racial growth R{t)
under the balance of the corresponding driving and retarding forces:

i)First ragime:

large radial momeantum flux My and small times t ;in this regime the

flow is similar to the radial momentum jet and on dimensional analysis we
find:

————
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Ry) = C,MY/# 172, (2.8) where C, Is an experimental constant.
i) Second rogime:
balance of radial momentum fiux MR and the inertia force Fl
Ra(t)- CZ(MR/Q)t.(z.s) where 02 is an experimental constant.

iiljThird regime:
balance of the pressure (buoyancy ) force F and the inertial

p
force F, . i.e. F_ = F, so that we obtain:
i V174 3/4
Rg) = G ('9Q/pg) /" ¢
where C3 is an experimental constant.

v) Fourth regime:
balance of the buoyancy driving force F. and the retarding

p
interfacial shear force Fsh'

{2.10)

le. Ryl = Gyl gQlv/pg )' /&2 2.11)
whare C, is an experimental constant.

Therefore, the radlal submerged axisymmetiic spreading s
characterized by four reginmes. Subsequently we dascribe experiments
conducted to tost the above asymptotic laws.

3. EXPERIMENTAL PROCEDURE

A weli organized series of approximately 100  experiments were
performed to make possible the appesrance of all possible regimes in the
radial growth history. For this purpose we varled considerably the
Initial parameters and the ambient stratification and we conductad the
experiments In  three ditferent tanks of dimensions respsctivaly a)
100cmX100cm by 30cm deep b) 120emX120cm by 60cm deep and ¢) 270cm by
480cm by 200cm deap. Tap water and commerclal sait was used to
siratify the tank, In such away that the stralified fiuld  essentlally
consisted of three layars:a top layer and a boltem layer with
constant  densities py and P respectively and an intermediate

pycrnioline layer In which the donsity increased linearly with the
depth from py to Py - The intrusion was produced by

discharging colored tap water of density Po = 1gr/cm3 at constant voluma

flux (measured using a calibrated flowmeter) at the botiom of the tank
through a pipe of dlameter D, which varied between 0.2 cg to 1.25 em. The
constant input volume flux Q0 varied from 0.2 to 85 ¢m“/sec {i.e. almost

three orders of magnitude) and the initial Reynolds number from 63 to
6800. The initial densimetric Froude number varied fram 1.5 to 200.

Tha spread of the buoyant plume at its neutral level was monitored
using a video camera, The time from a large digital watch wae also
racorded. For small Reynoids numbers, the spreading interface was
smooth, aithough not always axisymmetric. For larger Reynolds numbers
(i.e.Re> the visual appearance of the intrusion was characterized by
instability waves.We calculated the area A within the contour of the
spreading paich at time t using a digitizer Interfaced to a personal
computer. The mean radius R{t) of the contour at time t
was caliculated from the relation

R = v A/M @.1)

———
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The Brurt-Valssala frequency was calculated by the relation . J

1/2 : '
N = (g0~ 0 / p.H) |
In these experiments varisd N from 0.06 to 4 sec’. :
4. BEXPERIMENTAL RESULTS -DISCUSSION
For each experiment the radius R(t) of the spreading slug was
determined using Zqu. 3.1 and plotted as a function of tirme. Typical
resuits are shown in Figures 2,34  showing the four regimes &nd the
transition between thess regimes. it can be seen In Figure 2 that there
s a ﬁgll-deﬁned region in whick the radius R{f) at small times growths
like t {regime of radial jet) and then the next regime of with glope t
L / can be seen the transition of the inertia-bugyancy il
regime (R ~ { to viscous-buoyancy regime (R4~ t/9. In some
expeﬁmems the combination of the initial parameters was such that the
regime Rz(t)~t collapsed and the transition occuwed from the radial

jet regime Ry~ 21/ 2) to ingrﬂa - bucyancy regime (R ~ t /4) as ls

indicated in Figure 4. It is also pointed out that for small‘ Reynolds
numbers at the jet exit (or for small input volume fluxes) the radial
momentum Is negligible and the regimes R1. R2 and R3 could not be

observed in tq%case the only observed regime is the viscous-buoyancy
regime R , @48 indicated in Figure 6. All the experiments of

Zaisepin and Shapiro (1982) clearly belong to this regime.
The driving horizontal radial momentum is larger than the driving

bucoyancy force when

S e

M > p'gH3R orfor t, < Ma :
L p'gH3/2q172

it is tharefora apparent that when the (driving) radial momentum is
small the first two regimes R, and R, can not be observad. For t>t, the
dominant driving force s the pressure force Fp .and the balance of
.- forcea gives either the ragime R3~ t3/ or the regime Ry~ t1/2
! The length R° and timeo To sceies which separate the inertia-buoyant
regims R:s from the viscous-buoyant regime H4are given respectively by

6 1/8 2 1/2
S L
. L (p'gQv/p )] L ®P'eQv/pg]
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The influence of bottom topography on internal
seiches in continuously stratified media

Matthias Miinnich*
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Abstract

Standing internal waves, so-called seiches, are ubiquitous in reservoirs and lakes.
While the stratification in such basin is often cootinuous, the modeling of seiches
has beeu confined mostly to two-layer models. Such models are unable to give
reliable ingights about the vertical structure of the seiches, which might be crucial
for the understanding of vertical mixing in natural water basin. To obtain this knd
of informations a 2-dim. computer model has been developed, which takes both the
continuous stratification and the bottom topography into sccount. The results of
this model are presented. The computed seiche modes reveal that

i. scveral large scale modes can exist with similar eigenfrequencies;
ii. the modes have a iendency to develop narrow jets;

iii. ouly the lowest modes are strongly influenced by the bottom topography.

1 Introduction

Standing internal waves, so-called internal seiches, are nearly ommnipresent in reservoirs
and lakes. Most of these are gravity waves, for which gravity, or more specifically buocyancy
is acting as the restoring force. For a medium sized lake internal seiches have typically
periods of hours and amplitudes of several meters.

Due to the large amplitudes, internal seiches are important for various processes in
lakes. They cause a periodic vertical displacement of the suspended biomass and thus a
periodic variation in the light intensity to which algal cells are exposed (Gaedke and Schim-
mele [2]). The bottom currents associated with internal seiches can enhance dissolution
and remobilization of nutrients by transporting the products of bacterial decomposition
away from the sediment-water interface into the bulk water. The shear field associated
with bottom currents can lead to small-scale turbulence, which is able to resuspend ma-
terial from the sediment (Gloor et al. [4]).

To study the influence of bottome topography on the vertical structure of internal
sciches in lakes a two-dimensional numerical model has been developed. The vertical

*Present affiliation: Max-Planck-Institut fir Meteorologie, Bundesstr. 55, 20146 Hamburg, Germany
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structure of seiches is well known for lakes with constant depth, i.e., lakes with a rect-
angular cross-section. In this case the vertical shape of the seiche is easily computed by
separating the horizontal and vertical coordinates. If the depth varies, as is always the
case in pature, such a separation of horizontal and vertical structure is no longer possible.

There are indications that the influence of bottom topography on the seiche modes
is substantial. As internal seiches are a special form of internal gravity waves they are
obliged to the same reflection laws as internal gravity waves. Now the reflection of internal
gravity waves off a sloping boundary is quite peculiar. It is not the angle between the
incident wave and the lake bottom which is conserved upon reflection, but the angle
between the wave number vector and the vertical. Furthermore, neither the modulus of
the wavenumber nor the amplitude of the wave is conserved. If the slope angle of the
bottom is close to the angle between the wave number vector of the reflected wave and
the horizontal, both the wave number and the amplitude of the wave undergo strong
amplification. This increased amplitude of the reflected wave increases the probability
of its breaking. Such breaking of internal waves is believed to play a key role in vertical
mixing processes in the ocean (Garrett {3]}.

In view of the reflection laws of internal gravity waves what is the shape of the their
standing modes in a basin with sloping bottoms? Bringing some light to bear on this
question has been a major motivation for the present study.

2 The model

In two dimensions (one vertical, one horizontal) the governing equation for a stream
function ¥ of free, infinitesimal internal gravity waves in a hydrostatic Boussinesq fluid is

oty 0%
'a———‘-tzaz2 + N 5;:5_ = 0. (1)

Here N = N(z), t, z and 2, denote Brunt-Viisili frequency, time and the horizontal and
vertical coordinates, respectively. Employing the rigid lid condition eliminates the surface
waves. Then, assuming no outflow, the boundary conditions for 4 can be combined to

=0 at the boundary. (2)

For seiches the time dependence is sinusoidal 4 = ¢(z, z) sin(wt), which yields the follow-
ing eigenvalue problem in w for the spatial structure of the stream function:

82 N?9zr?
with ¢ = 0 at the boundary. Note the hyperbolic form of (3). The dispersion relation
following from (3) is

=0. 3)

w? = sz; (4)
k%'

with k& = (kz, ky) as the wave number vector. In a rectangular basin the waves number
vectors, which fulfill the boundary condition (2) are (g, k;) = (ILw,mDx); ,m=1,2,....
Inserting this in the dispersion relation yields for the frequencies of the seiche modes

D1\’
2 — AJ2
(d(l'm) = N F (—m—) .
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This shows that each eigenirequency is infinitely degenerate, because wf; ) = Wim) for
any n = 1,2,.... Furthermore, and even more remarkable, the spectrum is dense (in
the mathematical sense) on the positive real axis, because each rational number can be
written as [/m for suitable [ and m. The frequencies connected with large scale motion,
ie. small [ and m are surrounded by small scale motion, i.e. large [ and m. This forms
a major difficulty to find the desired frequencies of modes with large scale motions. The
properiies of the eigenvalue problem (3) prevents the usage of any of the usual numerical
methods to solve such problems.

We discretized the domain using finite differences on a rectangular grid, which was
adjusted to the siratification. The discretization itself filters ail wavelengths shorter than
twice the grid spacing. Az the numerical to solve (3) we cither used the QZ-algorithm
(Moler and Stewart [5]) or the Schur-Raleigh-Ritz (SRR) variant of inverse vector itoration
(Stewart [7]). For low resolution all eigenvectors were computed using the QZ-Algorithm.
The eigenmodes were sorted by the overall shear of the connected flow field. This way
only tie modes with the largest scale motion were selected. For finer resolution and to
test the indepeudence of the eigenfrequencies and mode stroctures from the spatial grid
used the SRR technique was used toe compute the eigenvectors in a narrow {requency
nterval. For more information see Miinnich [6].

3 Model results
3.1 Parabolically shaped lake

As one type of lake with non-constant bottom topography we caocse two differently scaled
parts of a parabola to model a typical “bathtub-shaped” basin. Usually the thalweg of a
lake is not sywmetric, and it is interesting to investigate how this asymumetry influences
the form of the seiches. The different scalings of the sections of a parabolas are used to
obtain such a asymmetric basin and to ailow a change the degree of the asymmetry. More
specifically, the following ore-parameier family depth function D,(z) is used

-1+ (‘"—"ﬁ)z for0 £z <a

a

De(z) =
o) ~1+(22) fora<s<l.

(6)

Here the free parameter a determines the asymmetry of the basin. Fig. 1 shows the largest
scale mode for increasing asymmetry. The most striking result is the constancy of the
locatiou of the maximum of the stream function, i.e., the place of no motion. It looks as
if the streamlines of the modes are pushed to this fixed location by the boundary, leading
to an accumulation of these lines near the lake bottom. If this is true in reality there
would be a “hot spot” of mixing iu this region. Another feature is the depth of the node.
t is not situated in the middle of the lake, as is the case for a rectangular basin, but is
shifted towards the deeper region. To our knowledge this has not yet been observed in
nature, but we must remember that a coustant stratification throughout the whele water
body is quite urrealistic. Usually there is one maximum of NV in the upper region of the
lake.

In Fig. 2 the some large-scale modes for a = 0.3 and shown. Each mode is numbered
by its ranking in size of overall shear among all computed modes.
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Figure 1: Streamlines of the first mode for a parabolic bottom with increasing asymmetry. The
stratification has a constant buoyancy frequency N. The periods T wure scaled by the ViH1
mode in a rectangular basin. The asymmetry parameter a is defined in (6). The grid resolution
is n, = 20 and n; = 15. Due to the finite resolution, the parabola in fis cut off before it reaches
its minimum.

R No.2 T=0.759!

°’9 No.3 TmL1T2

Figere 2: Some large-scale modes for a parabolically shaped lake with constant buoyancy
frequency N. The modes are sorted as explained iu Section 4.4. The order which the mode
obtained is indicated in the title. The period 7" is scaled by the lowest mode (I =m =1) of a
unit, rectangular basin with constant IV = 1 stratification. The rumber of grid points vertically
and horizentally is n; = ny = 30. The asymmetry parameter is a = 0.3.
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Figure 3: Higher modes for a parabolically shaped lake with censtant buoyancy frequency N
and agymmetry parameter a = 0.4. Resolution: n, = nz; = 30,

Modes 1 (Fig. 2a) and 2 (Fig. 2b) have nearly identical periods. A region of strong
currests near the bottom is associated with both modes, but mode 2 has nearly no motion
in the upper left part of the lake. Both modes will become excited by winds with periods
around 7" = 0.755. Mode 1 will have & sironger amplitude if the wind is blowing uniformly
over the lake, whereas if there are some sheliering effects which lead to weaker winds above
tke left part of the lake, mode 2 might be dominant. In Fig. 2¢, mode 8, with a similar
period, is displaved. This mode appears t¢ be sinilar to mode 1, but with small-scale
noise superimposed on it.

Mode 3 (Fig. 2¢) is easily identified as the anslog of the third vestical first horizontal
mode in the rectangular basin. Modes 5 (Fig. 2d) and 10 (Fig. 2f) seem to be two
variants of the second vertical first horizontal mode. Both have appropriate periods and
two (large-scale) extrema in their stream functions. Mode 10 shows some small scale
noise, as does mede 8.

In Fig. 3 the rest of the first 10 modes are displayed. All these modes are rather
unspectacalar. There horizontal or vertical cell size (wave length) is small encugh, that
these mode aze not very strongly influence by the basin topography. Ouly the flow cell
adjust to the local depth. So only the low-order modes with space scales on the order of
the size of the basin seem to be strongly influenced by the bottom topography.

3.2 Twoe basins separated by a sill

Another basin form often found in nature is a lake consisting of two {or even more)
hasins separated by sills. As the deviation of such a profile from the rectangular is more
pronounced, we should also expect larger differences in the seiche modes.

Up until now we used a constant N stratification, whereas the buoyancy frequence
profiles in natural reservoirs usually have a tharmocline, i.e., a pronounced maximum N
in the upper region. For this reason a stratification as shown in Fig. 4 is used in the
following.

For the bottom topography we use a fourth-order polynomial. To be more specific,
we use the one-parameter family of depth functions

(7)

Do(z) =~1+ (

Rz —1-a)22-1+44a) ?
{a+ e~ ")
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Figure 4: Stratification used in the following seiche calculations.

aad choose ¢ == 0.6, which gives a medium-sized sill. Fig. 5 shows the first few modes
ordered by our sorting routine. Whereas the first three modes shown in Fig. 5 a - ¢ are
higher modes, it is the 4th mode which we tend to interpret as the first basin mode. This
mode has some interesting features. The streamlines accumulate at the boundaries, while
the interior is relatively quiet. At the two ends of the lake the streamlines beund into the
interior at a depth of about z = —0.3. To a lesser degree, a similar bending is also seen
in the middle of the uppermost streamlines. The mode is quite noisy, and one might tend
to believe that this is just due to computational flaws. Even though we do not think that
the streamlines are reliable in all details, the overall pattern was found for different grid
resolutions (see below) and for all topographies with small and medium-sized sills. We
therefore believe that the general patteru is reliable.

Mode 6 again is a higher vertical mode. The last mode displayed in Fig. 5), mode 10,
bas 4 similar period as mode 4. It can be interpreted as another first basin mode. In this
mode we see again that the streamlines have moved together. Like mode 4 this mode is
quite noisy but here the tendency of the streamlines to bend into the interior of the lake
appears to be stronger.

In Fig. 6 a few other modes and their shear ranking are presented. As we have already
seen in Fig. 3, for such higher modes the structure is not particularly dependent on the
form of the topography. Again only the current cells adjust their size to the local width
and height.

4 Conclusions

Motivated by the peculiarities of internal waves in continuously straiified waters and by
the dominance of large scale standing internal waves, i.e., seiches, among the internal
waves in lakes, we studied the influence of bottom topography on the vertical structure
of internal seiches.

We established thut the mode spectrum of a lake with continuous stratification is dense
for a rectangular basin, which implies that such a lake can oscillate, at least in principle, at
any frequency whatsoever. The reasons why lakes still show distinet resonant frequercies
due to seiche motion are presumably two-fold. Firstly, most of these seiches are small-
scale motions which are not directly excited by the basically homogeneous wind stress.
Secondly, the shear stress associated with such modes is higher, and therefore these seiches
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Figure 5: Modes for o medium-sized sill and the same poaked stratification as in Fig. 4. Higher
modes are saown in Fig. 6. The numbers of grid points vertically and horizontally are n, = 20
and ng = 25, respectively. The periods given 1n the titles are scaled by the periods of the largest i
scale mode in a uwit rectangular basin with constant JV = 1 stratification.
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Figure 6: Higher modes for a shallow sill and the same peaked stratification as in Fig. 4. The
parameters are: a = 0.6, n, = 20, ng = 25.




are more strongly damped.

A linear, inviscid, two-dimensional numerical model was developed to compute the
seiche structures and periods in lakes with any givea morphometry and stratification.
Using a stream function it was possible to use the exact boundary conditions for the
seiche motion at the sloping bottom. The main numerical problem remaining was the
density of the eigenvalues. As we were interested in pure modes, we did not build any
friction or forcing into our model, and consequently the seiche spectrum remained dense.

Discretization was used to filter out most of the higher frequency seiches. Any finite
difference model can only resolve structure on a scale similar to or larger than the grid
size, 80 that modes with & finer structure are not represented.

The model was applied to two kinds of lake prototype: a “bathtub-shaped” lake
constructed of parabolas, and a lake consisting of two basins separated by a sill.

In a bathtub-shaped lake with constant stratification (buoyancy frequency NV = constant),

the model predicted a region of strong currents in the hypolimnion near the gentle slopes
at the lake bottom. Often two or even three kinds of large scale seiche modes were com-
puted with similar periods but distinet mode structures. For higher modes with spatial
scales smaller than the spatial scales of the variation of the thalweg, this variation was pre-
dicted to have ouly a moderate influence. These modes adjust smmoothly to the changing
depth.

For a lake with a sill, the largest-scale mode was predicted to result in strong currents
above the sill. For some paramneter values for the height and position of the sill, these
currents spread out throughout the whole water column to form a closed, jet-like structure.
Such a region of strong currents is consistent with the prediction made by Baines {1] of
increased seiche wave amplitudes above convex bottoms. Again the small-scale modes
adjusted smoothly to changing depth.
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STABILITY AND MIXING OF A TWO-LAYER EXCHANGE FLOW
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ABSTRACT

The stability of a two layer exchange flow through a contraction is investigated experimentally and analytically.
Experiments validated the predictions of hydraulic theory from cases with no net barotropic flowrates o wedge
flows with high barotropic flowrates. Instsbilities which depend on the shear layer Reynolds number and the
locat Richardson number exist at varipus scales. Linear stability analysis of a tanh velocity and deasity profile
with varying thickness ratio and boundaries imposed at arbitrary distances shows the existence of several modes
of instabilities including Holmboe and Taylor modes. The swability properties of exchange flows are described
baved on this model.

INTRODUCTION

Two layer exchange flow thiough a contraction of slowly varying geometry is described by the internal
hydraulics mode! outlined by Armi and Farmer (1986). The exchange is conirolled at locations where the flow
is critical with respect W internal waves; &t the narrowest section and at a second, 'virtual’ control. Fex flows
with no bavotropic component these control locations coincide ar the narrows. Addition of 4 inoderate barotropic
net flow creates a subceritical region between the two controls and changes the interface Ievel at the narrows from
half depth. Strong net barotropic flow arrests one layer and as the barotropic flowrate is increased, wedge or
'box' flows are established.

The assumptions used in the formulation of & hydraulics model foc the exchange flow allow only long wave
solutions. Auention to the swbility of these flows has therefore been limited to infinitely kong waves. Long
(1956) obtained the criteria for stability of infiniicly long waves in a boundzd sheas flow. Defining the stability
Froude number by F3 = AU?/g’h, where g' is the reduced gravitational acceleration and b is the total depth,
Long's criteria is Fi < 1, for stability,

Armi and Fanner considered long wave stability at the control locations. Flows with no barowropic component
were found to be marginally stable whereas addition of net bavotopic flow stabilized the flow at the controls
with respect to long waves. Lawrence (1990) further studied the long wave stability of barotropic flows
throughout the channel and found that a net barotropic flow caused shear to decrease upstream with respect to the
net flow and w increase downstream. As a result thess flows become unstable at a location downsteam of the
namrowest section, where the interface level is at half the total depth and beyond which 72 > 1.

Qur laborutory experiments show that exchange flows are predicted well by hydraulic theory and that
Lawrence's stability analysis for barotropic fiows can give a general description of stability properties of a real
flow over a range of Reynolds numbers, Fiows are indeed found to be unstable to long waves following
hydraulic analysis. However, we also find that exchange flows are unstsble, in many cases, (0 smaller
wavelength disturbances while long waves may be stable. Figure 1 shows low and high Reynalds number
exchanges with no net barotropic flow illustrating the variation of stability.

The phenomena observed in the laboratory were alsc investigated analytically by considering the lincar
stability of a finite thickness shear layer bounded above and below by rigid boundaries.
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FIGURE 1. Exchange flows at (s) g’ = 0.39, Reg~ 500 (b) g’ = 3.92, Rey= 1000

()

()
bin) 4.Oom
]
— n \i\‘\__,_

FIGURE 2. (a) Expevimiental seiup (b) Exchange flow plan s side visws

EXPERIMENTS

“The experimental facility consisted of & plexigias fla-bottomed, convergent-divergent channel connecling two
resexvoirs (figure 2). Bach reservoir is 123cm x 246cm x 24cm. ‘The coniraction postion of the channel is
112cm long, 4 cm wide at the nairowest section and 10,2 cm wide at the ends. One end of the contraction has a
61cm long soction attached, of constant, 10.2cm width, All experiments were conducted with the reservoirs and
channels filled to 20cm. Density differences wers obtained using salt and the fluid was dyed with food coloring
to distinguish the layers.

Videotapes were used to obiain quantitative flow data. Poussium permanganate crysials dropped in the channel
left sharp vertical streaks, the timing of which was used to measure flow velocitics. With average interface
heights and velacities, flowrates and Froude numbers were computed for selected locations. Errors in velocities
of order 10% are due to measurement accuracy, boundary layers and the finite thickness shear layer.
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FIGURE 3. Stability Froude numbey, F2 and composiie Froude number, G2 vs nondismensicaal width, byb,

Forcing instabilities along the interface was attempted by various techniques, the most successful employing a
latex membiane attached to a sidewall and intermitcntly inflated with fleid. This reduced the widih of channcl
and caused the interface height o change. The resuiting disturbance would thea be convected with the flow.
This device was installed just downstream, with respect to the net barotropic flow, of the narrowes: section.

Figure 3 shows composite Fioude number, G4, and tho stability Froude number, Fa2, for a flow with
nondismensional barotropic coraponent, Up= -0.21 (soe Armi and Farmer, 1986), This data demonstrates that
the flow becomes supercritical downstream of the narrows. The data for Fa? shows that shear increascs
downstream, destabilizing the flow, leeﬁectofﬁicﬁwimheadmmeiswideminbwcrvﬂmofﬁzmd
Fa? than those predicied by inviscid hydraulic theory. For cxampile, at b/b, = 1, theocy predicts G2 = 1 and
Fa? = (.96 for thig flow. ‘The influeance of friciion can be undexstood by first considering a single layer flow.
The growth of boundary layers along the sidewalls will lead to an effectively narmower chanael with the control
existing downstream of the physical conuraction. The reluted case of single layer flow over a sill was
investigaied by Pratt (1986). For the two layer exchange, the net result is the introduction of a subcritical
region at the narrows for the case of no barotropic flow, or, in ¢xchanges with net barotropic flow, an increase
in the length of the subcritical region. This resulis in decreased flowraies and lower Froudo numbers. Taking
these cffects into accownt, laboratory cxperiments validated the predictions of hydraulic theoty for exchange
flows with and without net barotropic flow.

Reynolds aumber effects were found to be significant in the stabilicy of exchange flows. A finite velocity
inerface develops between the two layers as & result of viscous diffusion, the thickness of which is a function
of the shear, AU, and the leagth of the channel, L; expressed iix terms of channel Reynolds number,
8/L ~Re.". The shear layer Reynolds number is given by: Re; ~Re, . Below a critical Re, flows are
stable to all wavenumber distusbances. At higher Re,, the interface eventualiy becomes unsisble 1o
disturbances which scale with the shear layes thickness. This is displayed in figure 1, for two exchange flows
with no barotropic component. With small density differences (Ap/p ~ 0.0004) velocities were low and the
flows were laminar and stable everywhere, With higher stratification (Ap/p = 0.004), the interface is unstable 10
high wavenumber instabilities and & twrbulcatl mixing layer dovelops. Por flows wiili & nél GarGIopc
component, Re g increases downstream due to changes in 8 and AU. Moderzte Reyuolds number cases were
chosen for moce detailed study since, in these flows, the interface is distinet while there are significant regions of
ingtability.

For the cases with no net barowropic flow, the depth at the narrows generally remained at haif depth as predicted
by hydraulic theary, with intermittent periods of instability occurring on either side. Finite amplitude waves
would grow and break as they were swept outward from the center. As barotropic flow is introduced, the
interface height at the narrows follows hydraulic theory and the upstream portion of the flow becomes noticeably
more stable. Disturbances ravel upsiream (with respect 1o the net barowropic flow), but generaily damp out.

Figure 4 shows images of a series of locations in the flow referred to in figure 3. The upstream portion is
coipletely stable through the narrowest section. Just downstream of the narrows, disturbances begin o appear
on the interface as the lower layer accelerates. Further downstream these have grown to finite amplitude
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FIGURE 6. General velocity and density profile

overturning add breaking waves. Far downstream, the fluid is considerably mixed, with entraining vortices
distinguishablo along the intexface.

As the net barotropic flow is increased beyond the rate at which one layer is amrested, a wedge flow is
established. Inviscid hydraulic theuy uires that the flow be intemally critical at the narrowest section. Since
one layer is arrested this requires: Flauy /gy- 1 for the flowing layer at the narrowest section. From this we
see that as long as the leading edge of Lhe © mmams upstream of the narows, the flow will remain stable o
long waves on the upstream side, since Fa = (y/h)F* <1.0. As the flowing layer is acceleraied downstream,
shear increases and ihe flow becomes unsnbletolong waves downsiream of the narrowest section. Figure §
shows a wedge flow in which the lower layer is flowing. The nez bawotropic flow is from left to right. Here the
lower layer plunges at the narrowest section and growing and breaking waves are seen 1o be convected

downsiream. The growth and subsequent pairing of theso instabilities could be observed wntil the vortices were
of the scale of the total depth of the flow.

ANALYSIS

We now consider a finite thickness shear layer and pursue a one dimensional inviscid analysis 1o obtain
stability properties st a selecied flow location. The exchange is represented by imposing rigid boundaries at
arbitrary distances from the interface corresponding to the channel bottom and free surface.

Hazel (1972) perfonned a numerical study of hyperbolic tangent velocity and density profiles with variations in
thickness ratios, R. He studied the effect of equidistant boundaries on flows wiih equal thickness scales (Rw1)
and found these destabilized long wavelengths at distances much larger than the layer thickness, Moving the
boundarizs nearer eventually stabilized the flow to all wavelengths. For unbounded flows, a sharper density
interface (R>1) inwoduced an unstable region, corresponding to the Holmboe mode (c.f. Holmboe, 1962), for all
@ and J. Lawrence, Lacheras and Browand (1987) further investigated this problem analytically and




experimentally, but for piecewise continuous, linzar velocity and density profiles with varying scales and
displaced centers. Again, variation of scales was found to produce a region of Holmboe instabilities.
Displacing profiles resulted in a third more uastable mode, also existing at all o and J, which they called the
‘hybrid’ mode, More recenty, Caulficld (1994) studied analytically a lincar shear layer with an intermediate
constant density layer separating the two bomogeneous regions. Seveial unstable modes were found to exist
including the Holmboe mode, & "T" mode, after Taylor (1931) who studied the corresponding instability in equal
scale siratified shear, and an additional mode called the R’ mode, comesponding 10 a resonance of Rayleigh waves
at low wavenambers,

The siudies discuzsed above form a basis for the consideration of finite thickness shear layers in exchange
flows. An idealized general shear layer model is shown iu figure 6, The stability of small disturbances in an
inviscid, incompressible, siratified shear flow is governed by the Tayior-Goldstein cquation, which, for
Boussinesq flow, in dimensionless form is:

f."’( ‘]ﬂ __“___aljfno
(u~c) w-c
where {(y) is the nondimensional vertical diswurbance velocity, ¢ is the complex phase speed, u(y) is the basic
velocity profile, J is the Richardson number at the origin, ' is the nondimensional density gradient and o is the
nondimensional wave nunber. All velocities ave nondimensionalized by half of the overali shear, AU = Uy - Uz
and the length scale is one quaster of the shear layer thickness, 8. Using the Boussinesq approximation, we
define B as:

220 [ ate
B(y) ;A-:;ln( ” )

with f§ scaled so thai B'= 1aty = jp. We then use the profile:

B(y)= 72- hnhR(.v - 4—3”-)

and velocity protile: 4(y) = tanh(y)

to obtain a general velocity profike of thickness § with a deasity profile of thickness 8p = &/R, offiet by np,
givea by:

kap
p = El%ﬂz.e 29030)

The shear layer thickuzgs is defined as the distance between the two points having 0.964 of the freestream
velocity (tanh 2 = 0.968). As K — o, the density intexface tends to a siep. The Richardson number at the
origin, J, is then given by: J = Rg’8/24U3 .

By using ihie appropriaie boundary conditions and the background flow at a location of interest in an exchange
flow, the problem is posed as an eigenvalue problem for the complex phase speed, c. The no-slip condition at
the fece surface and ai the channel bottom require f=0 at these locations. For a slowly varying channel, the
background flow can be obiined from hydraulic theory or from experiments) data, Solving this problem, we
can obtain stability data from the model,

Far our experiments, shear layer thicknesses were measured from video recordings of dye uaces. Density layex
thicknesses were difficult 10 cbtain precisely but from rough numerical analyses and consideration of the
Schimidt number for salt, we estimate that the density interfaco is 10 times thinner than the velocity interface.
Lsboratory experimenis show a very sharp interface between the layers at moderate Reynolds numbers (for
example see figure 4aj.

Eigenvalues for the Taylor-Goldstein equation above were obtained using a finite difference approximaticn,
employing a two dimensional shooting method, with the no-slip condition on the boundary nearer o the
interface as a target. Given flow conditions, including density differeace, layer velocities and depihs, and shear
and density interface thicknesses, the complex phase speed is compuied for a range of wave numbers at the
reselting Richardson number, J.
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FIGURE 8, Shear layer for (a) zero nst barotropic flow, (b) moderate net barotropic flow.

STABILITY PROPERTICS OF TANH PROFILES

Our problem is complicated by the various mechanisms for instability and their corresponding scales. The
stability of disturbances which scale with the depth is dependent on the conflict between destabilizing pressure
field variations and stabilizing stratification. The stability of disturbances which scale with 8 is dependent on
. the balance between shear and stratification. In addition, Holmboe instabilitics may exist, which result from an
unstable phass coupling between disturbances on the velocity and density interfaces. For some ranges of

wavenumbers all of these mechanisms have an effect on stability.
The J-a planes for some of the cases considered are sketched in figure 7. For the case of R=1, we obiain an
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unstable region comesponding to the Tayloc mode, unstable only for a range of o and for J<0.25. This mode is
characterized by zero phase velocity and mos: unstable wavenumbers of about 0.3-0.5. When R>1, this mode
with cy=0 includes a larger partion of the J-o plane and a Holmboe region appears, characterized by a nonzero
propagating velocity and existing at all J,

The cffect of imposing boundaries on the tanh profile is to destabilize the lower wavenumbers. Higher
wavenumbess are gencrally unaffected by the presence of the bounderies, except at very low Reynoids numbers
where the shiear layer thickness may be of the order of the layer depth. The variations in relative layer depths
also affect the lower wavenumber stability. Changing the ratio of layer depths results in the addition of a real
component in the phase speed in the direction of the velocity of the thinner layer.

VARIATION OF STABILITY PARAMETERS IN AN EXCHANGE FLOW

In general, the inviscid stability of a shear flow depends on g', 3, AU, R, Mp, ¥y, y2 and L. For an exchange
flow with a given density difference, these parametess are a tunction of channel geometry and net barotropic
flowrate. The effect of viscosity will be to stabilize wavenumbers of scales less than O(8).

With zero net barotropic flow, the shear, AU, was found to be constant throughout the channel (Lawrence,
1990). The deasity and velocity interface thicknesses are functions only of the length of the channel . This can
be seen by considering boundary layers on cither side of the interface growing in opposits directions as shown in
figure 84, At & given jocation the shear layer thickness is equal to the sum of the individual boundary layess.
Layer depths are detenmined by channel width and energy difference between the two layers. The Richardson
number, J, is then constant for an exchange with no barotropic flow and variations in stability aro due only to
changes in layer depths.

For exchanges with net barowropic flow, shear is increasing in the direction of the net flow. As a result the
shear interface thickness is no longer congtant. Thig is illustrated in figure 8b, Moderate baroiropic flow will
result in slight variation in &, with J decreasing downsweam as AU increases. The range of J for a given
stratification is limited by tho variations in AU, & and the net barouropic flowrate, For the flow in figure 4,
measured values of J range from 0.5 at 10cm upstream (figurs 4a) w 0.37, 25cm downstream (figurc 4b).
Further downstream, mixing due w the instabilitics causes J o increase once again,

For strong barotropic flowrates, in addition to a growing shear layer and increasing AU, changes in the depth
of the non-flowing layer from zero 1w O(8) 1o O(h) lead w varying scales for the insiabilitics. At the leading
edge of a wedge tlow, stability is dominated initially by viscosity and by the presence of the near boundary.

We have not yei determined the variation of the density interface offset, 11p, for exchange flows. If we follow
the modei having two growing boundasy layers on either side of the density interface, thea 1, will be such that
the interface is at the location of zero convective velocity. By looking at the interface in a local trame of
reference, however, it seems there is nothing o suggest that momentum should diffuse more readily into one
layer than the other. The cases refered 10 here then only consider 1p=0. '

THE LONG WAVE LIMIT AND LONG'S CRITERIA

Long's criteria for long wave stability can be obtained from hydiaulic analysis of two homogeneous layers of
arbitrary relative depths with constant velocity profiles. The flow is found to be unstable to infinitely long
waves, Le, imaginary charscleristics exist, for £3 > 1.

For an unbounded shear flow, the stability boundary in the J-o plais, shiown in figure 7a, intexsecis wiih the
origin. When equidistant rigid boundaries are imposed, this intersection point moves up the J axis refiecting the
destabilizing of long waves at low Richardson number. As the boundaries are brought in closer, this effect
increases until the depth of the flow is O(3), wheae the intersection point again moves down the axis as all
wavelengths become stable. The Jocation of this intersection point can be interpreted in terms of Long's criteria
if werelate J to F2. We can rewrite J as:

-R13

T2
Examining the limit of ¢—0 numerically (figure 7b), we find that the location of the intersection point for R=1
and 6/h«1, is predicted by Long's criteria:

PRy

24

—m e e o

C e 4 —gpan —




- s mn

For shear flows with R>1, in the limit of ¢—0 (figure 74), the intersection is not predicted exactly by Long's
critesia, due 10 the presence of the Holmboe mode. For J=Jg and §/h«1 the flow remains uustable to
infinitely long Holmboe waves.

Using inviscid hydraulic theory, Lawrence {:990) obtained the result thai exchange flows with no net
barciropic flow are marginally stable 10 long waves, satisfying Long's criteric identically throughout the
channel. From this analysis we find then that these exchange flows will bs snstable to fong Holmboe waves at
the narrows since R>1, even though #% =1. The stability of this mode is dependent on the relative depth of
the layers, since it is a function of phase speed, which depends on layer depibs. As relative layer depths vary,
the flow becomes more unstibie, until the depih of one layer is O(0).

CONCLUDING REMARKS

The inviscid linear analysis of the bounded tanh vzlceity and density peofile shows that various modes of
instabilities may exisi, For the cese of 7,=0 these inciude the Taylor and Holmboe modes. The tode tnat
resnlts at a selected location in an exchange fiow then depends on the local Richardson numbez. For R=i0,
analysis shows that the most unstable mode for J<0.6 will be the Taylor mode. The effect of boundaries is
significant at low wavenumbess, but for 5/h«1 the effect on the fastest growing waves will be small,

The stability analysis agrees well with experimental observations. Usiag flow parameters ineasured 15ci.
downstream of the narrowest section for the flow in figure 4, the shear Iayer mode! with R=10 predicts a most
unstable wavekr~th of approximately 6cm, roughly the distance from core to care of thc instubilities seen in
figure 4b.

For exchange fiows with no net barotropic flow god &/Mli«i, J will be small throughout the channs! and the
instabilities will be within the Taylor mode region. For flows with & net barotronic component, J voties
through the chanuel. For 8/h«i, the unsiahle mode will most likely b= the Taylor mode in the dowastream
regic, where F2=1. For sous exclianges, i is possible that instabilities i the upsiream region, where Fi<l1,
may lic within (he Holmboe region. The nuture of these wavss will requize further investigation.
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Constricied flows from the Pacific to the Indian Ocean
by
Doron Nof!

Abstract

The question of how light water flows from one ocean to anuther through connecting
passages is addressed with the aid of a nonlinear analytical model. The focus is on the
indonesian passages, which are too bioad to be influenced by the so-cailed "hydraulic
couirel” and yet too nariow ¢ allow free flow through them. The "choked" flows through the
passages are driven by the ssa-level difference berween the two adjacent oceans which, in
turn, 1s detennined by the wind stness.

We consider two rectargular ocsanic basins (each of which contains a light upper layer
overlyiug a slightly heavier deep lower layer) separated by a thin meridional wall. The wall
containg a gap which is initially blocked by a gate; westerard winds are allowed to blow over
the tTwo oceans creating wesiern boundary currenss aad a sea-level difference between the
basins. The conceptual gate is thea removed and the resaliing nonlinear flow from the intense
westermn boundary currents in the Pacific basin to the sluggish castern Indian basin is
computed. The final sieady swie is taken to be analogous to the actual oceanic situation.

The aneiytical calculaiions are based on a simple wind-driven general circulation model
and a nonlinear integraisd momentwn constraint. The raomentum integral allows both
determination of the resulting currents and computation of the mass flux through the gap.
Two classes of chioked solutions are constructed. One mode corresponds to a siwation where
the flow through the zap originates from the right band side (looking upsueam toward the
inner Pacific basin from the cener of the gap) and the other mode 10 a situation where the
flow originates from the left hand side.

A sitcple gap formula which enables one to compuic the transports via the gaps is
derived. Numerical simulations (using an isopvenic model for the first mode) illustrate that,
after an inital period of oscillations, the theereticaily predicted steady stote is indeed reached.
Similarly, qualiiative "kitchen-typs" laboratory experiments with a siratified fluid on a
rotating tablc demonstrate the esiablishinent of the predicied currents,

It is suggested that the actual Indenesian throughflow is composed of both classes of
fiows, i.e., the throughfiow corresponds to an exchange via fivo adjacent gaps rather than cne
gap. The first gap (the southern passage) corresponds to Scuth Pacific water entering the
passages whereas the second gap (the northom passage) comvesponds to North Pacific water
entering the passages.

'Deparunent of Ocenaography 3048 and the Genphysicai Fluid Dynamics Institute, The Flerida State
Uusiversity, Tallabassee, Flonda 32306-3048 U.S.A.
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1. Introduction

The exchange of water between oceans s an interesting fluid dynarmeics problem. Of
particular importance is the exchange beiween the warm Pacific {cean and the relatively cold
Indian Ocean (via the Indonesian passages) because of its potentially unique relationship to El
Nifio and the "Great Global Conveyor Belt" (see Fig. 1). In this article the question of how
much water flows through the Indonesian passages and the origin of these waters will be
addressed theoreticaJly using nonlinear dynamics.

Our approach is to consider two idealized oceans separated by a meridional wall that
contzins a gap (Fig. 2). The castein (inner) basin corresponds to the Pacific and the westem
(outer) basin corresponds to the Indian Ocean. The actual connecting flow between the two
oceans begins in the northern hemisphere where the Pacific water enters; it then crosses the
equator and exits in the southern hemisphere (Fig. 1). Since we are mainly interested in the
compositicn and origin of the throughflow, we shali consider most of the area within the
Indonesian Archipelago to be a part of the Indian Ocean. Consequenily, the location of our
gap comresponds to the eastern edge of the Archipelago which is located in the northem
hemisphere, several degrees north of the equator.

Both of our conceptual oceans consist of a thin upper layer (and a passive infinitely
deep lower layer) and are subject to westward winds which raise the sea level along the west-
ern boundaries and depress the sea level along the eastern boundaries. Initially, a conceptual
gaie is placed across the upper layer in the gap (Fig. 2) so that the pressure diffcrence between
the basins 1s not causing any flow. In this initial state both basins contain a closed wind-
driven circulation consisting of a western boundary current and an interior Sverdrup flow.

The sea-level differeace can be easily computed froin the familiar vertically integrated x
moIcentum equation,

.Cs\x)
Pw ’

where, f is the Coriolis parameier, V the (northward) vertically integrated tra{lr)port (i.e., i
the y direction), g' the reduced gravity (g Ap/pw), h the upper layer depth, 74*/ the surface
wind stress in the x direction (i.e., eastward), and pw is the water density. Eq. (1.1) holds
both in the sluggish ocean interior away from the boundaries and in the intense western
voundary current where the fiow is geostrophic in the cross-stream direciion.

-w:-%%(mn (L.1)

Integration of (1.1) from the western to the eastern boundary gives the desired (square
of the) sea-level difference,

dx , (1.2

where, the subscripts "we" and “"ea" denote arsociation with the western and eastern
bqundanes, L is the basin's length, and it has been assumed that there is no net transport
within the cross-section (i.e., the boundary curr=nt transport cancels the Sverdrup transport).

_The associated westemn boundary current speed can be estimated from the curl of the
wind stress. To do s, consider the linearized y momentum equation,

m:-%%(hl)-kv , (1.3)
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Fig. 1. The flow pattern in the Indonesian passages (adapted from Ffield and Gosdon 1992). The MNorth
Equatorial cwrrent (NEC) and the resulting Mindanao Current (MC) approach tis passages from the
north, whercas the South Equatorial Current (SEC) approaches the passages from the south. The
North Equatoria Cornter Current (NECC) canies water 1o the east.

where R is the coefficient of interfacial friction (i.e., R = Bw, where w is the width of the
boundary current). Eliminadon of the pressure term between (1.1) and (1.3) gives,

which, upon integrating across the basin and neglecting the transport along the eastern
boundary, yields,

L gt :
Vw = Dwk 5;_ dx . (1.3a)
0

where Vy, is the vertically integrated meridional speed near the western wall. We shall see
that, with this information, it is possible to determine the transport through the gap.

This article is ¢rganized as follows. The problem is formulated in Sectioa 2, the
constraints and solution are given in Section 3, aud laboratory and numerical experiments are
described in Section 4. The study is summarized in Sectiun 5.

2. Formulation

Consider again the idealization shown in Fig. 2. As mentioned, the wind field is only
important as tar as seiting up the pressure difference across the gap via the establishment of a
westert: boundary current in the Pacific and a weak Sverdrup flow in the eastern Indian
Ocean. The direct effect of the wind on the area in the immediate vicinity of the gap (i.e., the
region within 3 few deformation radii away from the gap) is neglected due to its smallness
compared to that associated with the entire Pacific and Indian Oceans. Mamely, as far as the

gap's nonlinear dynamics are concerned, we consider an inviscid model where both the Pacific
and Indian basins extend to infinity.

i
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With the above formulation, the complicated problem of exchange between two
adjacent oceans with nonlinear circulation and wind stress above (Fig. 2) has been reduced to
the inertial exchange of two oceans with no wind stress above. One of these oceans (the
Indian) is stagnant and the other (the Pacific) contains a boundary current.  All the variables
prier to the removal of the gate are now known (in terms of the wind field) and the problem
has been simplified to a highly nonlinear adjustment problem.

[ Ly — f Ly >

Fig. 2. A schematic three-dimensional view of the simplified conceptuzl mode! for the indonesian
throughflow. The two oceans ave subject w westward winds which raise the sea level along the
western boundary, creatc boundasy currents, and depress the sea Jevel along the eastern boundary.
The Indonesian Seas are taken to be part of the (coucepinal) Indian Ocean so that the gap
comesponds to the easternmost passages (locaied in the nortbern hemisphere). The southem and
northern panels of the boxes correspond to regions with a zero wind-stress curl rather than solid
walls. An imaginary gate separates ipitially the two basins, The steady adjuste state reachied after
tae removal of the gate is taken o be analogous to the avesage oceanic situation,

Att=0 the gate is lifted and, subsequenth, light fluid starts penctrating from the Pacific
to the Indian Ocean. After some time of O(f*) a steady state will be reached and it is this
state that we shall focus on. It is assumed here that informasion generated in the gap area can
reach all the upstream and downstream regions via either Kelvin waves, Rossby
waves, or eddies interacting with the walls [i.e., anticyclones and cyclones which translate

due to the so-called image effect (Shi and Nof 1993, 1994) and c¢an transmit information to
the left or right (looking off-shore)]. -

We shall see that the exchange process has two modes (Fig. 3). The first corresponds to
a sitvation where Hy, > Hy, (i.e., the off-wall depth in the Pacific Hp is greater than the depth in
the Indian Hy) and the western boundary current near wall depth in the Pacific is alsc greater
than Id,. Under such conditions, the throughfiow originates in the South Pacific and
penetrates into the northeru part of the Indian Ocean. The second mode, on the other hand,
corresponds to a situation where H;, is smaller than H,, (Hp <Hy) but the western boundary
current near wall depth in the Pacific is still larger than H,. Under such conditions, the
throughflow originaies in the North Pacific and penetrates into the southern part of the Indian

Ocean. It will be later argued that the actual throughflow corresponds to a combination of
these two modes.
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3. Theintegrated momentum constraints for a stratified roiating fluic

As mentioned, exact nonlinear solutions will be obtained using the integrated
momentum. Consider a region S bounded by the dashed line for either mode one or mode
two (Fig. 3). Multiplication of the y momentum equation by h and integration over S gives,

jj (hugi+hv%‘;7)dxdy+f{ f°Uthdy+gz_'j_[ aa?(hz)dxdy=0 '
) S g

which, by using the continuity equation and streamfunction y (defined by dy/dy = -uh; oy/ox
= vh) can be reduced to,

[T [Zmovn g awd)]asay- [ [ &G aay+§ [ [ L aray=0 . 62
S S S

Application of Stokes' theorem to (3.2) gives,
!'f)huv dy — 3f>(mﬂ + B, \V)dx =0 (3.3)
¢ ¢

where ¢ is the boundary of S.

By defining y such that along the free bounding streamline W = g'H,%/2f,, and taking
into account that away from the gap the flow is geostrophic, one ultimately finds,,

Hp > Hn
outer

(Indian)

basin

Fig. 3. A diagram of the integration area for modes 1 and 2. Mode 1 conresponds to water originating on
the right hand side of the inner basin (looking toward the inner basiu from the center of the gap)
and mode 2 corresponds to water originating on the left. Mode 1 cormresponds to a Pacific
offshore depth (Hp) that is greater than the Indian offshore depth (Hy,) and is relatively simple.
Mode 2, on the ol.l?cr hand, corresponds to Hy < Hy, and is barder o understand because oue gets
the initial impression that water should flow Prom the outer to the inner basin ratber than from the
inner (o the outer basin. This is not the case becayse of the (negative) western boundary current
which raises the sea level along the wall. In the outer basin, the integration area is bounded by
the wall, the free streamline (b = Hp, y = 0) and a section across region 3. In the inner basin, the
integration area extends well beyond the expected decay region (i.e., DE is located several
deformation radii away from the walls). It is bounded by sections across region 2 and 1, the
walis and the line DE which is parallel to the walls,
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F hw,z dx + 'r] thzz dx + j B h3V32 dx=0 . (3.4)
0
0 oo

It is important to note that, even though the (uniform) Coriolis parameter f, does not
explicitly appear in this integraied momentum constraint, there is an important fundamental
difference between the rotating and the nonrotating constraint. The difference is that in the
nonrotating case (f, = U) the pressure term g'h2/2 does not drop out of the equation (because f,
is not present) so that instead of (3.5) one obtains the familiar relationship,

[} pA ~0 ¢ 2 - ' 2
[7 (b2 + BB Yax 7 (vt e B3 Y [ (hgvs? ¢ B Yanm0 5 gm0,
0

0o 0

Using the constraint mentioned above and other known constraints such a Bernoulli,
potential vorticity and linear momentum, the transports are ultimately found to be,

T, = B - HD
2,
+ 2
T;= &2%?_ {1-[1-G- Hn"I‘Ip)‘ﬂ""J'H"m"'l ]2} (3.5)

Wy 2
Ty =850 { [1- (1 HyHpe®v+ Holted T (ym )

4. Laboratory and numerical experiments

To examine the validity of the foregoing theory a set of qualitative "kitchen-type"
laboratory experiments and a set of numerical expedments were performed for a special case
of Mode 1 where there is no initial current in the inner basin and no light water in the outer
basin (i.e., Hy = 0). :

For this special case the analytically predicted transport which approaches the gap (from
the right) is g'H%2f,. The nonlinear transport through the gap is 0.3996 g'H¥/2f, implying that
about 60% of the transport never enters the gap. The laboratory experiments show in a
qualitative manner that indeed such a current system is clearly established (Fig. 4).

In addition, quantitaiive process-oriented numerical experiments using the Bleck and
Boudra reduced gravity isopycnic model agree very well with the thecretical predictions (Fig.
5). For this numerical experiment we used a closed inner basin of 1200 x 3400 km and a
closed outer basin of 3400 x 3400 km. The upper layer undisturbed depth in the inner basin
was 150 m, the "reduced gravity" was 10”m sec, and the Coriolis parameter was 2.5 x 103
sec’. These give a Rossby radins of about 50 km and we used a gap that is 250 km broad.
The horizontal eddy viscosity was 2 x 10? m? sec”, the grid spacing was 6 km (in both the x
and the y direction) and the time step was 360 sec. The boundaries were slippery and, as is
frequently done, the vorticity was taken to be zero next to the walls. It is important to note
that the adjustment process involves a considerable amount of energy loss. In the analytical
model, the loss is removed by the radiation of waves but the loss cannot be removed in the
numerical model. This causes the oscillations that are present in the runs.

S e
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Fig. 4.

(b)] tz2.4sec

] t=7.2sec (d} t=9.0sec

Subsequent photographs of a typical experiment for the one gap problem. There is
no initial current in the (dyed) inner basin and no upper layer i the outer basin. The
dyed light fluid starts penetrating into the outer basin when the gate is lifted. The
white ring is an (unaveoidable) reflection of the fluorescent light shining from above.
At t = 0 the white ring is still distorted due to gravity waves generaled by the
removal of the gate. Such waves disperse and change into Kelvin waves within a
few seconds. Itis clear that, as the theory predicts, a counter-clockwise flow pattern
is established in the inner basin even though the basin was initially at rest. This can
be easily seen by following the clusters of aluminum particles suwrounded by the
marked (smill and large) circles, and the marked open square. Physical constants:
f=126sec™; Ap/p=0.01.
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Fig. 5. A comparison between the analytical and numerical solution for the one gap problem with no
initial boundary current. The numerically calculated wansports in the various regious are shown as
a functicn of time. The model used is te 11/2 layer Bleck and Boudra isopycnic model (see text
for detalls). The initial delay associated with the establishment of the cuirents reflects the time that
it took for tlie information to reach the various regions in the model, Note that, given the simplicity
of (he analytical mode! and the lack of a mechanisim o rezmove excess cuergy from the numerical
model, the agrecment is excellent. This indicates that neither friction nor the tine dependent
oscillations are essentia! for understanding the processes in question,

5. Summary
QOur findings are:

1.  An exact nonlinear analytical solution to the exchange process (Fig. 1) can be
constructed. In terms of the undisturbed upper layer depths in the two adjacent
oceans (set up by the wind field), the transponts are given by (4.1). The transports
can also be directly related to the wind stress and the curl of the wind stress via
(1.2) and (1.3a). Detaiied computations are given in Nof (1994a,b).

2. The above relationships are associated with two maodes of exchange (Fig. 3). The
first mode corresponds to water originating on the right hand side (looking
toward the inner basin from the center of the gap) whereas the second corresponds
to water originating on the left. Both laboratory (Fig. 4) and numerical
experiments (Fig. 5) ate in excellent agreement with the theoretical results.

3. It is suggested that the acwal Indonesian throughflow is composed of flows
through two (or more) gaps situated in the easternmost portion of the passages
(Fig. 6). The southern gap corresponds to the so-called mode 1 and is associated
with South Pacific water entering the passages. The northern gap, on the other
hand, corresponds to mode 2 which is associated with North Pacific water entering
the passages. Our nonlinear formulas suggest that 11 Sv (1 Sv = 10¢ a%/sec) enter
the passages from the North Pacific (mode 2) and 1 Sv from the South Pacific
(mode 1) combining to a total of 12 Sv.

This new (inviscid) nonlinear theory differs markedly from the linear theory which
suggests that most of the throughflow originates in the South Pacific rather than the North
Pacific. Our inviscid nonlinear theory agrees with the observations (which also suggest a
,iodominantly North Pacific origin) without inveking an additional physical process. Linear

-7

—— e -

e —



o=

North
Pacific

water 24 (1 5) Sv

indian Ccean

Pacific Ocean

R 15 (2 5) sv
South

Pacitic
water

Fig. 6. A schematic three-dimensional view of the theoretically proposed circulation via two adjucent
£aps in the easterninost part of the Indonesian Archipelago (compare to Fig. 1).

theory. on the other hand, must invoke intense mixing activity to explaiv the presence of
North Pacific water within the throughflow. Readers who desire more detailed information

are refevred to Nof (1994a,b).
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ABSTRACT

We have performed theoretical and laboratory studies of the exchange of two fluids of slightly
different density through a straight channel with an underwater sill. ‘This exchange process is
controlled at locations where the flow is internally critical, calied controls. The position of
these controls is shifted by frictional and non-hydrostatic forces. When intemnal hydraulic
theory is extended to incorporate these effects the comparison with experimental resuits is
much improved. Both Kelvin-Helmholtz and Holmboe instgbilities are observed in the
experiments. Measurements of the wave length and speed of the Holmboe instabilities agree
with the theoretical predictions of Lawrence er af. (1991).

1. INTRODUCTION

This paper considers steady, two-layer exchange flow over a two-dimensional obstacle in a
natrow channel (Fig. 1). The study was motivated in part by the exchange of Mediterranean
and Atlantic water through the Strait of Gibraltar, and by the exchange flow through the
Burlington ship canal conrecting the heavily polluted Hamilton Harbor with Lake Ontario.
Exchange flows were first studied by Stommel & Farmer (1953), and later by many
researchers, including Armi and Farmmuer (1986), and Farmer and Armi (1986) assuming
inviscid, hydrostatic flow.

Frictional effects may be important in exchange flows. Dalziel (1988) found that the inviscid
predictions always over-estimate the flow rate. Bommans and Gasreit (1989) included
interfacial and bottom friction to study the role of friction in the exchange flow through the
Strait of Gibraltar. Friction was found to shift the control at the sill enstwards. Cheung and
Lawrence (1991) studied the exchange flow through a channel of constant depth, and obtained
estimates of the interfacial frictional factor from their experimental measurements.

Non-hydrostatic pressures caused by streamline curvature above the obstacle can be of crucial
importance in two-layer flows (Lawrence, 1993). Shen (1992) relaxed the hydrostatic equation
in his stwiy of two-layer flow over a very small sill. Forbes (1989) numerically solved the full
non-linear equations for a semi-circular sill using conformal mapping. In the present study we
place less stringent restrictions on the size and shape of the sill.

For two-layer exchange flows sirong shear at the inteiface generates hydrodymamic
instabilities, most notably Kelvin-Helm!lioltz and Holmboe instabilities. ¥or small values of
the bulk Richardson number, J, linear stability analysis predicts a Kelvin-Helmholtz instability
with zero phase speed with respect to the mean flow. For sufficiently large values of J,
however, there may be two unstable modes traveling in opposite directions. Holmboe (1962)
studied the special case where both modes have equal growth rate and equal but opposite phase
speeds. In previous experimental studies it has proven difficuit to obtain clear realizations of
Holmboe's instability, see Lawrence et al. (1991).

In the present paper we extend internal hydraulic theory to account for frictional and non-
hydrostatic effects, and we present results of experiments that provide perhaps the best
realizations of the Holmboe instability to date.
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2. EXPERIMENTS

Experiments were conducted in a channel of dimensions 1200 x 300 x 100 (mm) (length X
height x width) connecting two larger reservoirs containing water of slightly different density,
see Fig. 1. A sill of the form h(x) = hm cos2(x/L) (for |x / L| S 7/ 2) was placed in the left side
of the channel, where bty = 80 mm, and L = 160 mm. The cosine squared function was chosen
to have the relatively low values of obstacle slope and curvature. The driving buoyancy force
was obtained by dissolving salt in the right reservoir. The position of the interface and its
defarmation by flow instabilities were visualized by dissolving a fluorescent dye into the lower
layer and ilurninating it with a thin sheet of laser light. Flow velocities were determined using
recently developed image processing techniques, (Stevens & Coates, 1994), which allowed us
to obtain an instantaneous record of the velocity field,

The experiments were started by removing the gate used to separate the two water bodies.
After an initial start-up phase of about two-minutes & maximal-exchange (see Anni & Farmer,
1986) with one control at the sill and the other at the far (right) end of the channel was
established. After about 4 - 8 minutes the exit control became submerged leaving a sub-
maximal exchange with a single control near the crest of the sill. We are primarily concemed
with the period of maximal-exchange during which the flow was quasi-steady.

One of the important features of the flow is the formation of Kelvin-Helmholtz and Holmboe
instabilities at the interface between the two layers. The K-H waves grow to the left of the sill
crest, where the shear is strong due to the high veiocity of the lower layer; the Holmboe waves
develop in the right pant of the channel, where the shear is not as strong. Only positive
Holmboe waves are observed initially. These positive waves are generated near the sill crest,
move to the right and cusp into the upper layer. Eventually disturbances form at the right end
of the channel and negative, left moving, waves are also observed. Fig. 1(c) is a sequence of
photos showing the motion of both the positive and negative waves. For different shapes of
the sill and different flow velocities, the nature of the instabilities change. The Holmboe
instabilities are discussed further in Section 4.

3. EXTENDED INTERNAL HYDRAULIC THEORY

Internal hydraulic theory can be extended to include the frictional and non-hydrostatic effects
for the two-layer exchange flow shown in Fig. 1(b). The following notation is adopted: u is the
horizontal component of velocity, y is the layer thickness, q is the flow rate per unit channel
width, p is the pressure, p is the density, g is the gravitational acceleration, and z = Yo, h + ya,
h are respectively the positions for the free surface, the interface, and the bottom. The
subscripts i=1,2 refer to the upper and lower layer, respectively,

We start by considering inviscid, incomnpressible, and irrotational flow with immiscible,
layered (constant density within each layer), and Boussinesq (€ = (p2-piVp2 << 1)
approximaticns. Given the Boussinesq approximation, the "rigid lid" free surface assumption
is valid. We also assume the sill is smooth, and the flow is shallow; i.c., 0 = (H/L)?2 << 1,
where H and L are the vertical and horizontal characteristic length, respectively. Note that the
sill in our study can be of finite size, WH = 0(1). This 1s less resiriciive than Shen's
requirement that WH = 0(02).

Assuming the horizontal velocity is constant across the layer depth, the vertical velocity can be
obtained from the continuity equation. Both the pressure, and the internal energy (Bemoulli
constant) have second order of accuracy 0{(c?) after averaging across the layer depth. This
averaged internal energy remains constant throughout the channel if frictional effects are
ignored. A brief outline is given below, detailed derivations will be presented in a subsequent
paper.



Assuming uy(x) = y_‘i'x) (i=1,2) (1)

We write the internal eneryy in the form:
EI = Ely + AEL, ¥}
whete the hydrostatic component is given by:
Ely =k - Ty
2y on 3
and the non-hydrostatic effects of flow curvature are given by:
2
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where g' = £g, is the reduced gravitational acceieration. EI should remains constant
throughout the channel when frictional effects are not important. Thus, (2) can be soived for
y2 (the lower layer thickuess) with the non-hydrostatic effects accounted for.

When frictional effects are also important, we follow classical hydraulic analysis (see
Henderson, 1966), and introduce a frictional slope, Sy, where:

dEl
RN 5
a7 ®

Using (2), and letting S, = d(AEIL,)/ dx, (5) becomes:

dog+h) _Sr=S,=5
dx 1-G*

(6)

where F? = qfigy},and G* = Ff + I'; The topographic slope S = F-i," % for the straight
channel, the siope due to flow curvature S, = d(AEI, )/ dx, and the friction slope
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where f; and f, are the interfacial and bottom frictional factor. Solving (5) or {6) for
exchange flow with both the frictional and non-hydrostatic effects included is much more
complicated than solving for the frictionless and hydrostatic flow. The procedure used for
solving the latter will be briefly reviewed first.

For the frictionless hydrostatic flow, the intemal energy remains constant throughout the
channel. As Syand S both become zero, the flow should be critical at the point where So=0,
i.e., at the sill crest. For maximal-exchange flow in a channel of constant width, the flow is
also critical at the right end of the channel. Therefore, three equations, G2= 1 at the sill crest
and the right exit, and the constant interual energy can be used to solve for three unknowns, g
(q1=q2=q for our experiments), y, at the sill crest and at the right exit of the channel.



For frictional hydrostatic flow, the intemal energy is changed by friction and the control
position is shifted from the sill crest. The bottom frictional factor can be obtained theoretically
from the boundary layer theory. The interfacial frictional factor is determined indirectly by
maiching the theoretical and measured flow rates.

For the frictional non-hydrostatic flow, we may either use the iteration method starting from
the frictional hydrostatic solation, or solve (5) as a boundary value problem. Fig. 2(a) shows
the hydrostatic and non-hydrostatic trictional predictions of interfacial positions compared with
the experimental measurements. Fig. 2(b) shows the change of the internal energy along the
channel. The internal energy is changed siguificantly by friction. The inclusion of the non-
hydrostatic effects is important in the sill region as it raises the internal energy. The extended
theory provides excellent agreement with the experimental results, with the bottom and
interfacial frictional factors estimated to be about 0.01.

4. INTERFACIAL INSTABILITIES

The stability of a two-dimensional, inviscid, stratified shear flow depends upon the vertical
variation of density p(z) and of the mean horizontal velocity U(z). For the piecewise linear
velocity and density profiles of Fig, 3, the stability diagrams can be obtained, see Lawm}ce et
al. (1991). Four dimensioniess variables are used: the Richardson number J = g' i/ AU*; the
wave number o = kh, where & = 21/A, and A is the wavelength; the relative displacement of the
velocity and density profiles d/h; and the wave speed ¢ = (¢* - UJ)/ (AU / 2), where ¢ are the
wave speeds for the positive and negative wavgs. The Reynolds' and Keulegan nunbess may
also be important: Re = AUR/v,and K=AU’/(g'Vv).

From the stability diagrams, we know that K-H waves only occur for the symmetric (zero
displacement, d/h = {}) case with J < 0.07, while the Holuboe instabilities can occur for any
larger J, and also for the asymmetric cases (d/h + 0). Fig. 1(c) shows the movements of the
Holmboe waves observed in our experiments. In this flow J = 0.3, aud the 1nean velocity is
about 0.5 cni/sec. Thus both waves are traveling at about the same speed with respect to the
mean flow, satisfying the requirements for Hotmboe's (1962) instability,

The wave length and wave velocity, for both the positive and negative waves, van be cbtained
from measurements of variations ir the interface elevation, Fig. 4 siows a typical wave
characteristics plot, with the intensity representing the relative height of the inteiface. The
positive and negative waves appear as oblique bands of dark and light. ‘Wave speed and wave
length can be essily obtained from the slope and spacing of the bands. These measurements
can be unsed to compare with the theoretical predictions, A comparison for one expsriment is
listed in Table 1. The flow has: U=0.6 cm/sec, AU=4.0 cra/sec, h=3.0 cm, g’'=1.6 cm/sec?,
and d/h == 0. Thus J is about 0.3, with Reynolds number Re = 1200, and Keulegan number K =
3500. We can obtain the theoretical predictions for the flow, knowing that the wave which has
the largest growth rate is the one most likely to be chserved:

Theo:y- } Measurement
Wave A" (cm) 10.5 10
Length A" (cm) 10.5 it
Wave ¢ (emisec) 1.6 1.5—18
Velocity ¢” (cn/sec) -04 -0.5—-0.6
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Table 1 shows that the linear stability theory accurately predicts the wave length and speed.
The theory can also explain further experimental observations. During the ealy stages of the
experiment, the amount of the displacement of the interfaces is relatively large (¢/h > 0.1) and
the ncgative waves are suppressed. Later in the experiment the ragnitude of the shift
decreases, and we start to see both the positive and negative waves. The reasons for changes in
the displacement of the velocity and density interfaces are not fully understoed.

5. CONCLUSIONS

Exchange flows through a narrow channel with a sill are affected by both frictional and nos-
hydrostatic effects. Friction eifects are important along the entire length of the chanrnel, while
the non-hydrostatic effects are important in the vicinity of the sill. An exterded hydraulic
tkeory including both the frictional and non-hydrostatic effects gives very good agreement with
the experimental results. Both Kelvin-Helmhoitz and Holmboe instabiiities are observed on
the interface. The wave lengths and phase velocities of the Holmboe instabilities compare well
with the theoretical predictions of Lawrence et al. (1991),
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Fig. 1. (a) Plan view of the experimental setup. All dimensions are in millimeters. The sill

is placed in the left part of the channel, shown as the dotted area. (b) Definition diagram

of two-layer exchange flow over a sill, with both X-H and Holmboe waves. (¢) Sequence

of photographs showing Holmboe waves: The upper layer flow is from left to right, the

lower layer from right to lefi. The flow has a mean velocity of about 0.5 cm/sec. Grids are
. 5 cm apart. Photos arc taken at .5 second interval.
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Abstract

An experimental study was carried out to investigate water exchange through the
narrow strait with two-layer flow structure and net barotropic transport. The facility
consisted the tank that was divided on the two basins connected by a shallow and
narrow rectangular strait. One basin was heated at the bottom. Another basin was
cooled at the top. The velocity and temperature measurements were made using the
hydrogen-bubble technique and the iemperature probes, respectively. The results of
measurements were given for the short, intermediate, long strait in dependence on
magnitude of the net barotropic transport. The experimental data were compared
with the model calculations based on principle of the maximal exchange.

1 Introduction

The extremely important role of straits in forming hydrologic and ecological con-
ditions in inland seas is well-known. The water exchange through strait depends
on the adjacent seas water balance and hydrologic structure as well as the strait
topography. Because of this the strait models remain to be the necessary part of
the model of the inland seas climate evolution (see e.g., Nof, 1979; Maderich and
Efroimson, 1986). Detailed hydrodynamic description of straits is difficult because
many factors and processes should be consider - strait topography, momentum and
mass transfer between layers influenced by turbulence and unsteady effects (tides
and surges). So, development of simple one-dimensional or even simpler bulk (null-
dimensional) models of sea straits is very important for hydrodynamic modeling and
pre diction of environmental processes in seas.

There are many straits with two-layer structure of currents (e.g., the Bosphorus,
Daidanelles, Gibraltar, Bab—el-Mandeb, Hormuz etc.). The internal hydraulics of
a steady frictionless two-layer flow through channel was the most extensively stud-
ied at recent decade. The concept that was developed in such flows was maximal
exchange (Armi and Farmer,1986; Farmer and Armi, 1986). The problem of the
water exchange through long strait with friction (Assaf and Hecht, 1974; Anati et
al., 1976; Oguz et al., 1990) vet is less well understood.
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In this paper, we present the results of an experimental study of water exchange
through the narrow strait with two-layer flow structure and net barotropic transport.
The simple model based on concept of maximal exchange is considered in Sect.2. The
experimental arrangement is described in Sect.3. We used a channel with geometry
similar to experiments of Anati et al., (1977) but with different measurement device.
The results of experimentis are given in Sect.4.

2 Model

Following Maderich and Efroimson (1986,1990) we consider a simple bulk model for
a two-layer stationary water exchange through strait. The shallow and narrow strait
connects two basing maintained at different density p; and p; respectively (p; < pz)
and net barotropic discharge Q; from basin 1 to basin 2 (@ > 0). The rectangular
strait is length L, constant depth D and width A. The mean along strait depths of
upper layer and bottom layer are Dy, I}y, respectively

D = D, + D,. (L)

The volume discharges in the upper (@) and bottom (@;) relates to the mean
velocity in layers u;, ug by @; = ADju,, @2 = AD;u;. The water balance of the
system is

Qi+ Q=0Qy (2)

It is common practice in such cases to use models based on a so called "hydraulic
control” principle, which requires that the internal composite Froude number G be
equal to a critical value G,. At small density difference ((p2 — p1)/p2 € 1)

G = F 4 F} = G2 ®

Here

2 _ _ @5 2 _ @5

hegmaE T A W
"= g(p2 — p1)/ p2, g is gravity acceleration. In the short straits G, = 1 whereas in
the long straits with predominated friction effects parameter G, < 1.
The system of equations (1)-(3) contains four variables besides G, and g'. To
close the system we used the condition of extreme water exchange in the strait, i.e.,
we supposed such layer thicknesses that the flow in the bottom layer is maximal

0Q:
5. =0 (5)

The second extremum (@, = 0) is achieved ai the end of the range of possible values.
Flows @1 and @, are connected by (2), so Eq. (5) involves the extrermum either for
the upper flow. Taking a derivative of Eq. (3) with respect to D; and using (5), we
have simple condition of maximal exchange

: pi .
&5 ©
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From Egs. (3) and (6) taking into account Egs. (1) and (2) we obtain explicit
formulae connecting thicknesses of layers and discharges with some morphometric
and hydraulic parameters of the strait and with independent components of basins
water balance

Dy = %D(l +7rG7), (7)

Dy = :D(1 =G}, (8)

Qi = 36,Qn(1+ G ©)
Qr = ~7G,Qn(l ~ 767V, (10)

where Q. = S(¢'D)*/?, S = AD is a cross section of the strait, 7 = Q;/Qn.

Following to approach of Maderich and Efroimson (1990) we accept a condition
similar to (3) for a long strait either, but the averaged along the strait the Froude
number G, should now be less than 1. Generally G, depends on the strait geometry
and possibly on another external parameters. It is easy matter to derive explicit
formula for G, iz particular case ¢y = 0. Tor a long sea strait the main balance in a
bottom layer is a balance between baroclinic pressure gradient and bottom turbulent
friction. In the laminar laboratory analog of this strait with A € D the pressure
gradients balance side wall friction in the layers except the ends of strait

a 82’11.1
7] , d*u .
5;(9( +g'n) = VEF?- (12)

The coerdinates = and y are taken along and across the strait respectively. Here
¢ is the surface elevation, 7 is the interface deviation, v is the kinematic viscosity.
Instantanecus local thicknesses of the layers f{; and H, are defined by

Hi=Dy—-n+{, Hi=Dy+1. (13)
Integrating (11),(12) across the channel and excluding ¢ we obtain
0,  12v HR; — HyQy

== - . 14
Oz A3g' (H - Hy)H, (14)
A using of the critical Froude condition at each ends of strait with Q; =0
2 2
i s+ 9z =1 (15)

A?by(Dy ~n)® ~ A%,(Dy + )
is evident (Assaf ard Hecht, 1974; Anali et al., 1977). Integrating (14) from 0 to L
and eliminating @y, Q2 in (18) we bave:

G, = —(1 - 6%), (18)

= | o

§2(1 — %52)2(1 +36%) = 43(1 = 82)°. (1)

3



Here 6 = (L) — 7(0), v = 12vL/(A*\/g'D) is friction parameter. For a short strait
v & 1, for an intermediate strait v ~ 1 and for a long strait v >» 1. Some approaches
when Qs # 0 were considered Maderich and Efroimson (1990).

3 Experimental arrangement

The experiments were conducted in a rectangular Plexiglass tank, 200 cm long, 17
cm wide and 40 cm deep (Fig.1). The tank was divided on two basins. These basins
were connected by shallow and narrow rectangular strait placed along front wall.
The two-layer water exchange was maintained by heating of simall basin (length 33
cm) by electric heater placed near the bottom and by the cooling of large basin by
the tap water cooler. The cooling box was situated at the surface of the large basin.

N,

oo
n
2

:—Qé%

-~

|

== 40 cm

~
=3

Lieater
!
I 200 cm {/.1‘7 cin

Fig.1. Schematic drawing of laboratory set-up

The three configuration of strait were used: short, intermediate and long. The
depth of strait D = 8 cm was not changed. The short strait was modelled by plate
with thickness L = 2 cm. The intermediate strait was length L = 60.5 cin and
width A = 2.0 cm. The long strait was the same length but A = 0.9 cm. The strait
and small basin were insulated. A barotropic flow was directed from heated basin to
cooled one. The constant flow rate was provided by using of the constant pressure
vessel. The outflow from large basin took place through the funnel at the surface.
The rate of outlow from tank was calculated with help of measuring vessel.

The temperature disiribution in the strait was observed by the vertical profiling
in the ten sections with a thermistor probe attached to the traversing platform.
The platform can be moved along strait. The velocity measurements in ten sections
along strait were made using hydrogea-bubble technique { Matsui et al., 1975). The
bubble generator was made by stretching a stainless wire (0.0027 cm in diameter) in
a vertical section of the channel. A proper electrical pulse was applied between the
wire as a cathod and plate on the bottom of channel as an anode. To diminish the
buoyancy effects at low speeds we selected the electric parameters for generation of
the smali bubbles (pulse width 2 - 6 ms., voltage of 40 - 70 V). The pulse interval
was 0.33 - 0.66 s. The wires alsc were attached to a small amplitude vibrator to
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enhance conditions of the bubbles tailing. As a result of these measures the velocity
of the bubble rising was less 0.1 cm/s. The flash lamp with condenser was used as
a light source.

4 Results

A series of experiments was run for the short (v &~ 0.1), intermediate (v = 0.6)
and long (v = 3.0) straits. The barotropic flux Q; was varied systematically in
the range: 0 < @y < 13.5 cm®sec™* for short strait, 0 € Qs < 6.4 cmsec™! for
intermediate strait, and 0 < Q5 < 3.2 cm®sec™! for long strait. In the experiments
the buoyancy b, typically lay between 1.20 and 1.28 cmsec™2.

The longitudional distribution of the velocity and temperature in the long strait
for Q; = 0 are shown in Fig. 2. The temperature and current profiles consisted
of two Lhomogeneous layers with a thin thermocline and shear layer. The heights of
the thermocline and zero speed changed almost linearly along strait. Bul the layer
of maximal temperature gradient was shifted downward relatively to the position of
the zero speed. This flow pattern was quite similar to Fig.10 Anati et al. (1977).
The presence of the net barotropic flow did not change qualitatively the picture of
currents for moderate @ as seen from Fig. 3. The interface between homogeneous
layer was shifted downward but it shape and slope had not undergone the marked
change. The diminishing of the velocity in bottom layer causes the transformation
of temperature field at the cost of heat conductivity. The effect of "locking® strait
for bottom undercurrent can be seen at Q; > 3.2 cm®sec™.

The comparison between the measured thickness of bottom layer and the local
Froude number

_ 9 QF
CL=Zmm t A i (18)

and computed ones from model is given in Fig.4. The figure shows a reasonable fit
the model to the data. The model however overestimates the slope of interface. The
most discrepancy belween the predicted and experimental values G, at the ends of
the strait is due to the inertial effects that have been neglected by the viscous model
and errors in the determination of zerc speed points at the ends of the strait.

In Fig.5 the measured depth of the upper layer was plotted against the net
barotropic flow. The straight line (7, = 1 corresponds to the model of maximal
water exchange (see Eq. (7)). The dependence of 2Dy/D — 1 on Q;/Q@,. for the
intermediate and long straights also is the linear function, i.e. the G, is an approx-
imtely constant. The value G, == 0.42 for long strait, that is in a good accordance
with the mode] prediction G = 0.41 at }; = 0. What this means is parameter G,
in a first approximation depends only on the strait morphomeiry.

The relation between the discharge @; and and averaged depth of the upper
laver D, is given in Fig.6. Accordingly to Egs. (7), (9) the function (Q1/Qm)"? is
depends linearly on D;/D for constant G,. The data is consistent with this relation
but measured disharges were less than predicted with G, calculated from Fig.5.



8r

10

20

16 long sirait &1 Q = 0 and b, = 1.28
ashed; prollias. (b} A longitudlonal

Fig.3 The tamperature and velocily disributions In tha long sirsil &t Q = 1.78 cm¥sec and
b, = 1.29 ¢migect.

cinisect, (a) Veloeity {(aoild) and lemperature (d

Fig.2 The temperature and valocity distributions in {;
tempurature section.

{a} Veloclly {solid) and Ismperature {dashed) profiias. {t} A

longitudional femperature section.



Hy/D

Fig.4 Tne measured thickness of poliem layer HyD {circles) and local Froude
numbor G {squares} at Qy =0 and b, = 1.23 cmrsac?. Soild lines comespond (o
computed distributions Hy/D and G,

20,40-1
0.8F G042 GpObt Gl
-]
0.6}
' o
0.4 °
nu
0.2}
N .

[} 0.2 0.4 0.6 0.8 i

Qi
Fig.5 The moasured depth of upper laver versus nat barotropic flow in tha short
sirall {squares), inlermediate 3trall {liangles} and long strail {circles).

2
Gyui
{4QrQ ™
1.5} Gy = 0.8
Gy » 042
1
0. -y i
5 1 15 2 25
20,0

Fig.6 The discharge In 1he upper tayer Q, versus evergged dapth of upper ayer
D,. Tha symbols as in Fig.5.

e



e e e P e e A Ty i e

PR P

R e T

5 Conclusions

The present study has produced the {cllowing results:

(1) The simple one-parameter bulk model of water exchange in the long narrow
laminar strait with net barotropic flow was proposed. This model was based on
concept of the maximal exchange.

(2) The results of the laboratory experimenis on the water exchange in the short,
intermediate and long straits with net barotropic flow were consistent with model
but the measured baroclinic flows were weaker than predicted by the model.

(3) The single parameter of model G, in a first approximation was function of
the strait morphometry only that gives possibility to use this model with empirical
value of G, for the parametrization of water exchange through straits in the models
of general circulation.
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Hydraulic Control Analysis of an Integrated Gravity Current Model

GUTTORM ALENDAL
Nansen Environmental and Remote Sensing Center, Bergen, Norway

A steady state gravity current model which incorporates entrainment and
friction is used to describe large scale gravity currents and channel flows.
When the model includes pressure effects from varying current thickness,
critical points occur when the current velocity is equal to the phase velocity
of waves on the interface. Some solutious have the possibility to pass from
super- to sub-critical flow, or vice versa. These solutions pass through a
hydraulic control point and the objective is to analyse the behaviour of the
solutions in the vicinity of such points.

Using a phase space in which the hydraulic control points occur as equi-
librium points, performing standard Taylor expansion to the first order,
the result is a system of autonomous differential equations with constant
coefficients that can describe the behaviour of the solutious for different,
parameter regimes near a hydraulic control point. If an equilibrium point
in phase space represents a saddle point it is distinguished between three
different solution classes; solutious that approach the critical velocity but
never reach it, solutions that reach the critical velocity and obtain infinitely
large derivative, and the solutions (oue from subcritical and one from su-
percritical) that reach the critical velocity exactly in the equilibrium point.

INTRODUCTION AND PROBLEM DEFINITION

Flows driven by gravity /buoyancy occur in many contexts both in the nature and in the
laboratory, see Simpson (1987) for examples. One approach that is often used to model
these events are integrated or bulk models, i.e., models which do not treat the interior
fluctuations explicitly but model the variables averaged over a cross-section of the current
(see for instance Smith, 1975; Killworth, 1977).

The steady state gravity current model is derived rigorously in Alendal e al. (1994) and
since the main objective is to study the solutions in the neighbourhood of the hydraulic
control point, the medel will be stripped for the influence from salinity, temperature
and density variations. Further, the current is assumed to flow in a channel with given
width and inclination as function of the along stream direction, and rotational effects are
veglected. The remaining model equations then read: (subscript 2 means 8/8z)

(pAu), = pFwu, 1
(pAw?) = Ag(p= p)(sin - hs) - Cp pwu?. (2)

These equations are the local steady state continuity and momentumn equations averaged
over a cross-section, with normal vector in the along stream direction z, and with area
A. The quantities p, u, w, and h are, respectively, mean density and velocity over the
cross-section, and the width and thickness of the flow. The density of the ambient fuid is
denoted with p. The right-hand side of Ea. (1) represents entrainment of ambient water
which is assumed to have no momentumn The entrainment parameter, E, is usually



assumed to be dependent on the Richardson number, Ri = g'hcos@u=?, of the flow
(Christodoulou, 1986). The first term on the r.h.s. of Eq. (2) is the gravity/buoyancy
force while the last term represents the drag with the drag coefficient Cjp which may also
be dependent on the Richardson number (Alendal et al, 1994). In this study both the
eptrainment parameter and the drag coefficient is, for the sake of simplicity, assumed
constant.

The input of energy in the model is due to gravity/buoyancy while friction and en-
trainpment of ambient water with no velocity represents sink of energy. The k. term in
the gravity/buoyancy term occurs as a result of incorporating the effect from variation in
current thickness on the pressure.

The area of the cross-section is proportional to the width and the thickness of the
current

A = auwh (3)

where « is a proportionality parameter. Assuming that the width of the current (channel)
is given through constraints the system is closed and solvable.
Using Eq. (3) and substituting v = v? into the system gives

%lw, +vh, =Tv—hof(z) (4)
-é-)wz + hhy = g'hsind — Cyqv (5)

where ¢’ = g(p — pe)p~! is the reduced gravity and

pe & Wy
= > a fx) = o Ce=(Cp+TD)/a. (6)
If the inclination angle, 6, is dependent on = and the entrainment is neglecled, I' = 0, the
model is similar, although differing in notation, to the oue used by Pratt (1986) to study
flows over an obstacle. Further, the model is also similar to the more general model of
Wajsowicz (1993} with special choices for the friction and entrainment functions.

The system has critical points when u? = g'h, the phase-velocity of waves on the
interface between the flow and ambient water. When the velocity of the flow is larger
than the phase-velocity the flow iz said to be super-critical, while for smaller velocities
the current is sub-critical. Solutions passing from sub- to super-critical or vice versa are
called hydraulically controlled and the points where these flows goes from one regime to
the other are the hydraulic coutrol points (Turner, 1973).

Nondimensionalising using

v=1v9, h=hgh, z=Lx (7

with ho = L and vy = uj = gho, where L is a characteristic length of the flow, gives the
nondimeunsicnalised system:

%Eﬁx + Thy =TT — RUf(X) (8)

L TR =R v )

gh'b'x*hhx: hsinf — Cqv (9)
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Subtracting Eq. (8) from Eq. (9) gives
(R~ %) Ry =Rsin — (Ca + I) T+ Kf (x)- (10)

If the r.h.s. of Eq. (10) do not approach zero as 7 — A the derivative of & will approach
infinity (positive or negative), or in other words the hydraulic control peint is given when

T=h, hsinf— (Ca+D)T+nTf(x)=0 (11)

simultaneously. Notice that if the inclination angle and the channel width is constant,
8 = constant and f(x) = 0, a cuitical slope, €ind = C + T, is defined for which the flow
may freely go from sub- to super-critical dow, or vice versa. On the other hand if the
slope is not critical there is no hydraulic control selutions for the steady state model.
To analyse the solutions in the vicinity of hydraulic control points a phase space and a
pew independent variable is introduced which transform the singularity to an equilibrium
point.

THE GENERAL ANALYSIS METHOD

Here follows a brief summary of the phase space analysis method. Ax exhaustive cutline
of the method may be found in Bilicki et al. (1987) where it has been used on two-phase
flows. In Gien and Alendal (1993) the method was used on a model describing the heating
and acceleration of the solar wind.

The method can be used on dynamical systems of the general form

~ d
Alo) - 337 = Blox), (12)

where A is a k x k matrix and b and o are k-dimensional vectors. Notice that the
coefficient matrix A is not dependent on the independent variable x. The system has
unique solutions in tegions where A = det(4) # 0 and by use of Cramers rule (see for
instance Anton (1984)):

do; _ Ni(o,X)

dx  Afo) 7
where Ni(c, x) is the determinant of the matrix resulting from replacing column i in A
with the vector b. Introducing the new independent variable (7) such that

dx

=a0) (14)

i=1,2,...,k, (13)

it follows that

do; doidy Ni(o,2) '
—_— = el T = N = -..,k, 15
d77 dX dT’ A(o’) A(U) N3(01 2)1 ] 1, 2, ( )

giving an autonomous system with & + 1 differential equations:

dx do,

E = A(O’), dn

= Ni(a, %), i=1,2,... .k (16)
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Points in the k£ + 1 dimensional phase space, denoted T = (o, ), where A # 0 are called
regular points and only one solution pass through these points. Points where A = 0 are
called critical points and defines a k-dimensional manifold in phase-space which separates
the space into a sub- and a super-critical region. The normal vector to the manifold,
called the critical manifold, is perpendicular to the x-direction since A is not dependent
o1 x. A theorem in Bilicki e? al. (1987) says that if A = 0 and N; = 0 for any j, then all
the other N,’s are zero simultaneously. This gives the following classification of points in
phase space:

1.Regular points when 4 # 0,
2.Turning points when A = 0 and V; % 0 for all NV,
3.Singular points when A = 0 and N; =0 for all V;.

The theorem states that each of the manifolds defined by N; = 0,1 = 1,...,4, all
intersects with each other simultaneously as they intersects with the critical manifold
A = 0. This means that the physically acceptable solutions that pass through the critical
manifold passes in the mapifold defined by the intersection between the critical manifnld
and the manifolds defined by the N/s. Solutions going through a turning point iu phase-
space are not physically acceptable solutions since at least one of the dependent variables
gain infinite derivative there.

To study the solutions in the vicinity of a singular point, 7 = 7, Taylor series expansion
in 7 = 7** 4 67 is performed. Truncated after the linear term this gives a linear system

with constant coefficients
%{& =& UV =6 (17)

where VT = [A, Ny,..., Ni] is the vector holding the dependent vatiables for the au-
tonomous system given in Eq. (16), and

N o4
80'1 o 60',2 -
eNy N oM
F=vviy=| Kl 0l 60 (18)
oM. oM ON;
ox |,.. 0Oo1l,.. 00 |.e

is the jacobian matrix evaluated at 7 = 7**.

Another theorem from Bilicki et al. (1987) assures that A = 0 is an eigenvalue of the
Jacobian matrix defined in Eq. (18) with multiplicity (k —1). The remaining two nonzero
eigenvalues with their eigenvectors control the behaviour of the solutions of the linearised
svstem in the neighbourhood of the singular point. The eigenvalues of J are the roots of



the characteristic pclynomial on the form
AED (N —pa+g) =0 (19)

and the classification of the equilibrium/singular points is now given (Jordan and Smith,
1987):
Saddle point g <o,
Node g>0, p®—4g>0, (20)
Spiral or Center ¢ > 0, p*—4q <0.

If a singular poivt is a center or a focus there is no possibility to find any solutions
passing through the point and further all solutions will eventually approach a turning
point. These solutiors are not physically acceptable unless the outlet of the channel is
teached before the turcing point is reached. For nodes all solutions passes through the
singular point.

For saddle points the eigenvectors connected to the two non-zero eigenvalues span a two
dimensional subspace in the (%+1) dimensional phase space. Solutions passing through the
singular point will, ia the neighbourhcod of the point, be directed along the eigenvectors.
If these soluticus wiere to be calculated numerically the algorithm is as follows; Since
the singnlar point is a saddle point we know that the two nonzero eigenvalues are real,
distinct and with different signs. The corresponding eigenvectors, e;, ¢ = 1,2, define four
directions in the phase-space (remember that if e; is an eigenvector then so is ~e;). Taking
one sizil! step from the singularity in one of the four directions the ordinary differential
equation system is again regalar and ordinary numerical integration can be performed.

THE CHANNEL FLow PROBLEM

Returning to the gravity current model, Eqgs. (8) and (9), which written on the general
vector-matrix notation in the previous section reads:

T h
T
~d : 'v—h
ALyl 2 T dfe) [ Tv-hufi (21)
dx ! h [ h 5 dx | hk hsinf(x) - Cv
2
aud according o e previous section
A = é‘h (I.L - .\,
i To-hofly) v
No=too =v {Cqv+h (['-sinb(x) —h fF(x)}
i hsindix) ~ Cyr R (22)
I % To- huf(x) 1
Ny = I . = §h {hsind(x) = % (Cq+T — hf(z)) }
i = hsinf(y) - Cyu
The c: ttical points occur when ~
7(} = 5 (23)

1|
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defining the critical plane, and the singvlar points when in addition
Ca+T = hef(xc) —sinb(x:) =0, (24)

as already stated in Eq. (11). Acceptable solutions passing through the critical plane have
to pass through points that satisfies Eqs. (23) and (24) simultaneously.
The eigenvalues of the Jacobi matrix, Eq. (18), are the roots of

/\[/‘\Z—p)\+q] =0 (25)

where 1
P= Ehc [3Cs +17, (26)

g= %hi [Ca = sin 8(xc)] F(xc) — %hﬁ [hc ((—%f(;@) + ( 8%2 sin 9(;&))} . @D

Classification of the hydraulic control point is now given from Eq. (20).

SPECIAL CASES AND EXAMPLES
A Degenerated Case

A degenerated case arises when the c. :h and the inclination are constant. Eq.
(24) then contains only constants and if tue « _ .clon is not fulfilled there is no possibility
for hydraulic controll sclutions. If on the other hand the equations are fulfilled, defining
a critical slope, solutions can pass the critical plane everywhere. Notice that in this case
there is only one nonzero eigenvalue since ¢ = 0. If either the entrainment parameter or
the drag coefficient are not constant, but for instance are dependent on the Richardson
number this is no longer true.

Constant Channel Width

If the inclination is dependent on x and the channel width is constant, f(x) = 0, then
Eq. (24) gives the position of the hydraulic control point.

Ezample. As an example the obstacle used by Pratt. (1986)
sin 6(x) = bmx- (28)
may be iilustrative. The singular point is located at

JGatl

c— bm

(29)

showing that rot ouly the friction moves the the hydraulic point downstream frora the
top of the or-iacle as stated by Pratt (1986), but also the entrainment is doing that. In
the notation of Eq. (19)

p=5@C+T)  g=—Sbn (30)

showing that the hydraulic control point always is a saddle point as long as b,, > Q.
6




Varying Channel Width

On the other hand, if the width of the channel is dependent on x, then Eq. (24) defines
a a curve laying in the critical plane which is a relation between the thickness of the
current and the x position for the hydraulic control points. In this case Egs. (23) and
(24) are two equations with three unknown leaving one undetermined. It is possible to use
the freedom from the nondimensionalising to scale the current so that either the thickness
of the current or Y, is equal to 1 for the drsired soluticn. It is then possible, at least for
saddlepoints, tc integrate backwards to the iunlet of the channel and find the initial height
and velocity needed in order to have the hydraulically controlled solution.

Ezample. Let the width of the channel be given by the function

w(x) =ax+b (31)
with the inflow at x = 0 and let the inclination be constant. This gives

a 2

ax + b’

a

fx)= T

= %f(x) = 0% (32)

Scaling the flow so that h, = 1, the critical point z, is now given as the solution of

Flxe) =

Q

b Cam o= (33)

where € = sinf — (Cy +T'). If € > 0 (< 0) there is net input (output) of energy in the
neighbourhood of the point. This gives the position of the hydraulic control point at

1 b
Zo = _._+;4L (34)

Since the inlet was assumed t0 be at x = 0 negative z, cannot be accepted so in order to
have a hydraulic control point —ab~! < € < 0. From Eq. (26)

= -ie (e —2T) (35)

and the hydraulic control point is always a saddle point as longas e < 0, fore =G itisa
node.
f(x) constant and constant inclination

For this case Eq. (24) becomes

hd+sinf—-Cy—I'=0 (36)

and is only dependent on the thickness of the current. The location is undetermined and
has to be found through shooting techniques. The width of the channel for this choice of
f is given by

w(x) = wo exp (dx) - (37)
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CONCLUSION

An integrated gravity current model has been simplified, neglecting salinity, tempera-
ture and density variations togetker with ro.ational effects. This simplified model reduces
to well known equations for flows in open channels, with possibility for obstacles and vary-
ing width of the channel.

Using a phase-space metbod, the hydraulic control points transform into equilibrium
points. In the phase-space there are solutions passing the critical plape in turning points
but these solutions have infinite derivative for at least one of the dependent variable
with respect to the original independent variable making these solutions not physically
acceptable.

It has also been shown that the hydraulic control point is not always a saddle point in
the phase-space.
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ONE KIND OF INSTABILITY FOR A FLUID WITH HEAVY PARTICLES

EXPANDED ABSTRACT
by 6. I. Burde

Ben Gurion University, Jaceob Blaustein Institute
for Desert Research, Sede Boker Campus, 84993, Israel

The subject of this paper 1s stability and wave motions,
originating from an instability, in a two-component £luid
consisting of a carrier fluid (gas) and solid particles dispersed
throughcut the gaseous ccmponent and settling downwar... As the
particles are treated as a passive scalar, affecting only the
density of the mixture, the instability arising is of an
Archimedian type [1] in the sense that the motion is caused by
buoyancy forces due to spatial variations of the concentration of
particles.

The waye in which suspended particles can influence the onset
of Benard convection were studied beginning from Scanlon and Segel
[2). The effect of settling particles on the convective stability
of & horizontal layer heated from below was considered by
Dement‘ev [3]. The stability problem of a two—cowmponent £luid
layer, when spatial variations of a second component are added to
the thermal gradient, has been examined in the series of papers
initiated by Stern [4] (‘thermohaline convection®, see review of
Turner [5]).

Our formulation of the problem differs from all the above
mentioned. It is assumed that a thermal stratification is absent
and the concentration of particles increases with height. 1In
general, the fluid in such a state is unstably stratified in the
sense that any perturbatien grows with time, if dissipative
effects are absent. It appears that coupling between the
particles’ distribution and gravitational settling can make such a
state stable even though viscosity and diffusivity effects are
negligible. This result is obtained from the linear theory in
which the motion of the mixture is described by the system of the
Boussinesq equations and of the equation of continuity for
particles ircluding the flux due to the gravitational settling of
particles, as follows

— .



8c/8t + u'Vc = = V(- DVc + n;cg/g)

where w_ = gT is the terminal fall velocity of particles in gas (=T
is the velocity relaxation time). Such an approach is a good
approximation if wt « 1, where w is a perturbation frequency. The
more complicated formulation, incorporating the egquations for two
interpenetrating continua, produces results which are
qualitatively similar to those obtained for the simpler one.

If the flow in a region bounded by the horizontal surfaces is
considered, it is natural to take the basgic state to be a solution
of the governing equations which is independent of x, y and t and
has u = 0. bu: we will concentrate our attention on a somewhat
different situation. The point is that a formulation of the
problem mentioned above is not relevant to the case of dust
(airborne particles) fallout in the atmosphere. If a dust cloud
has been raised from the ground by an explosion or erupted from an
elevated source , it will fall as a whole, preserving the initial
particles’ distribution within it. The same situation arises if
the dust particles are involved into a high level atmospheric
stream (for example, by strong vertical wind velocities ahead of a
cold front over a desert region) and deposition from the stream
occurs far from the source region. It is natural for such
situations to take the basic state to be a solution of the initial
equations for which the particles’ concentration is independent of
t in the coordinate system falling with the cloud at the terminal
velocity w_. The equilibrium solution in the presence of diffusion
is dc/dz = G = const, where Z is the vertical coordinate in the
falling coordinate system. If diffusion is negligible, as it is in
caim air when turbulence is abgent, the equilibrium concentration
profile may have an arbitrary form c, = F(Z).

The stability of the basic state is studied in the usual way
by superimposing small perturbations. As it follows from the
aforesaid, the formulation. of the problem which does not include
dissipative effects is of the most interest, the more sc, as for
non-turbulent gas flows and particle sizes typical for atmospheric
fallout the impact of the terms with viscosity and diffusivity in
the stability is negligible. Then the linear problem for wave-like
solutions of the form




¢ = A expl[i(k-r - wt)], k= (k, 1, m) (1)

is reduced to a dispersion relation with the roots expressed as

w=m[lt (- R/R)

R

geh®/v?, R, = mh(k® + 1° + m°)/[4(K? +1%)]

where h is a vertical scale and R is an adjustable dimensionless
parameter.

One can see that for R > 0 (6 > 0) both two real roots and
two complex conjugate roots can occur. If no complex roots exist
then stable dispersive wave propagation occurs. However, if
complex conjugate roots exist: w = w,. * iw; then instability
arises. As R is varied, the sign of the subradical expression can
change and the system can switch, through a critical value of R,
from stability to instability. Thus, the condition w, = 0
determines a neutral stable curve . It should be emphasized that
w; = 0 not only on the curve but also in the whole region below
the curve. This means that all this region corresponds to the
neutral stability as the dispersive wave propagation with no
growth and no decay takes place for any point below the curve.
Note, that on the basis of the general considerations, presented
by Gibbon and McGuinness [6], ohe can expect the existence of the
soliton-like nonlinear regimes for this type of instability.

The effect of nonlinearity on the initial state, which is a
harmonic solution of the form (1), is to cause a variation in the
amplitude in both space and time. This is due to the production of
higher harmonice, originating from the nonlinear terms, which
react back on the original wave. In accordance with the framework
of the multiple scales method one can define a set of “slow" space
and time variables as
z, ="z, T, =¢"t

averl s male o ~Atisde L mes Al bl el Sl o miem R TR T o
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power series expansion in ¢ (the small parameter e determines how
far the gystem is from the neutral curve). The amplitude function
A in (1) is a function of the slow variables zZ, and T, and the

subsequent calculations are aimed at finding the evolution
equaticn for 4. The 0(e) problem is a restatement of the linear




problem. Proceeding to the 0(¢®) problem, one finds that the
zl—scale must be excluded as producing secular terms. In the 0(93)
problem secular terms are removed 1f the amplitude function
A(Z,, T,) satisfies the equation which is a type of nonlinear
Schrddinger equation with space and time interchanged:

i04/0Z, + az.q/arf + BAlAl® = 0

where the linear term has been absorbed in the first term. Thus,
the nonlinear stage of the instability represents waves with an
envelope in the form of solitary waves.
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Stably Stratified Flows in Meteorology
JCR Hunt, G Shutts and S Derbyshire
UK Meteorological Office, London Road, Bracknell, Berkshire RG12 252, UK

In this paper we review three main ways that developments in the physical under-
standing and aumerical modelling of stably stratified flows arising from recent research
are being applied to the practice of meteorology.

(i) The cause of stable siratification

The fact that the meen staie of the atmosphere is stably-stratified (in the sense that
the dry entropy has a positive vertical gradient) is not immediately obvious since the
absorption of solar radiation ai the surface provides a strong destabilising influence. The
resulting vertical stratification is a balance between the destabilising effect of radiative
transfer and moist convective heat transfer. Here ‘convective’ is used in a generalised
sense and is associated with the upward transfer of heat (or moist entropy) along all
trajectories originating in the boundary layer, whether or not they form part of a deep
cumulus circulation or frontal ascent in a developing depression. The horizontal scale
of the vertical mass transfer accompanying this moist convection is highly asymmetrical
since the buoyancy generating effect of latent heat release occurs primarily in ascending
air. The greaier proportion of the atmosphere is therefore free of cloud. In regions
where active convection is taking place, there is a tendency for a suitably defined
‘moist entropy’ to be conslaat aloug angular momentum surfaces which are vertical
in the Tropics but lLiave frontal slopes in middle latitudes. The mean thermodynarmics
s*ate of the atmosphere is stroagly constrained by such processes and results in stable
stratification almosi everywhere.

(ii) ¥arameterization in weather forecasting models

Numerical weother and climate prediction (NWP) models reduce the relevant partial
differential equations of physics and fluid mechanics to algebraic relations between
physical variables and phencmena effectively averaged over finite volumes (with vertical
dimensiois ranging {rom 1 m noar the grourd to 1 km at 50 km altitude, and horizontal
dimensions raunging from 15 km in mesoscale models to 300 km iu global models) and time
periods ({rom 10%secs to 10*secs dependiug on the atmosphezic phenomenon involved).
However, the basic relations for quantities such as mezn velocity, temperature etc., require
information about other quantities, especially fluxes of momentum, heat, radiation and
water vapour, which cannot be derived formally (e.g., by a hierarchy of ‘closed’ equations).
These averaged guautities cannot be modelled with complete generality (in terms of
closed seis of equations) because the ‘boxes’ are sufficiently large that significantly
different phenomena can occur. Nevertheless, in practical NWP models assumptions are
made that, for different classes of atmospheric conditions (vsually defined by average
quantities and their gradieats, e.g., the Richardson number), characteristic phenomena
occur (or, in mathematical terms, eigensolutions of the governing equations slowly
chauging in time) which can be analysed in such a way (often with idealised models)
that their net effects on fluxes and other terms in the equations can be represented
al whe mesh scale and time interval of the NWP models. This was essentially Luke
Howard’s revolutionary concept in 1802 when he recognised that atmospheric motions
have definite paiterns and that they are manifested in distinct cloud types [1].
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Research is leading to new idealised models and thence representations (or param-
eterisations) of the characteristic patterns. One example is cumulus clouds in a moist
atmosphere whose temperature and humidity profiles are such that they are stable to
small perturbations but unstable to large perturbations; as a result of thermal convection,
characteristic plumes develop and clouds form with a common structure. Their net effect
is modelled by representing them as a single idealised entraining and detraining plume
in the middle of the grid box, so as to estimzte their effects ca heat flux, water vapour,
etc. [2]. Other examples of such models are scale dependent horizontal eddy viscosity and
in modelling lee waves caused by the drag of orography (se: “elow). Their improvements
should come from representing different characteristic phenomiena occurring in the same
o: nearby grid box (e.g., lee waves and convection over mountaius, the interaction of
cumulus and stratus cloud etc). The optimum selection of characteristic phenomena
for improving the models is usually statistical, decided on the basis of which modelled
phenomena improves the cutput best; the values of each change to the model is studied
systematically by calculating how rapidly certain features of the numerical predictions
depart from the measured changes of the atmosphere (e.g., [3]). The combination of
physical modelling and a systematic statistical evaluation is providing the highly effective
methodology for the steady improvement of models which all major NWP centres have
achieved over the past few years (as reviewed in [4]).

(iii) Forecasting issues

The interpretation of NWP is an essential part of the practice of meteorology, and
mainly the responsibility of forecasters. Their practice has changed substantially over
the past fifteen years from mainly relying on data and dynamical concepts (particulaily
those of the Bergen school of fronts and air masses, and Suicliffe’s concepis of cyclonic
generation or dissipation through horizontal convergence and divergence), to comparing,
interpreting and correcting NWP f{orecasts, with the aid of new kinds data that were
not avajlable fifteen years agc, notably accurate satellite irnages and average values
(over rather large depths) of temperature and concentrations of certain atmospheric
constitueats (water vapour, CO; etc). Recent research is clearly having an influence on
curzent interpretation, pariicularly on phenomena occurring over length scales which the
models do not resolve, for example, the air movement and precipitation bands within

stably stratified flow along fronts and the effects of wave growth on the speed of cold
fronts. '

Forecasting offices are still experimenting with the use of potential vorticity compu-
tations over a wide field to infer the tendency of a low pressure region either to be ‘cut
off’ and dissipated or to be amplified and develop into a local intense cyclone — still
one of the major causes of errors in forecasts on short time scales of the order of 24
hours [5].

Another mesoscale phenomenon that is not accurately forecast is the ‘break up’ of
layers of strato-cumulus cloud; probably because the key processes occur in the interface
layers between a dry stable air and a moist turbulent layer within the cloud, [6]. There
may be other velocity fluctuations such as lee waves from mountains to add to *he
turbulence within the cloud. Whether or not these are significant, in a westerly airstream
(say over the Welsh mountains) the break up of the cloud determines the temperature
and precipitation over much of the centre of England and the quality of the forecast.
This is a not untypical example of an ‘upscale’ phenomenon in meteorology. While
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the phenomernon is not {or cannot, because of computes Luatauoas) be umuiated, its
understanding by forecasters is unproving as a result of detried research of siraufied
flow, mixing and turbulence.

One of the reasons for the wider appbcation of metcorology to envircawmental
probiems and to the envircamentaliy semstive operaiica of coramerce apd transpoct
has beeu the improvements in undentanding amd modebag of simospoerc |roceises
on the local scale. These phesomers ave stromgiy mfuen.ed by loca. venauons i
surface elevation (‘orography”, the coverog of the ground suzface ;ie. “roughness’) and
surface temperature (¢ ., land-sea conlrast.. For exampie. uning the output of large- o
meso-icale NWP and the results of theosstacal wind insne and fieid resecascn studies
has led to improved forecasts and detasied local statutics tar [ocal winds (e g hoe waves,
slope winds), precpitation tncuding fog: and temperature. Trere s 4 steady L:ove {rom
providing this information from a combinanor. of large waie NWP. or weather »tatistics.
plus simple formulae {eg.. from the Forecaswesi’ Reterence Handbowk 7 ) to using large
scale data plus small computer codes eg.. {5,).

Some of the practical applications of meteorological research at this length scale
have been in air pollution dispersion and in wind energy. In both cases, concepts resulting
from rescarch on stably stratified flow over hills have been widely applied {notably, the
structure of the flow being divided into & 30ae where streamlines pass over the hill and a
lower zone where ihe streamlines nass round the hill, but see objections to this approach,
[9]), leading in the first case to useful criteria as to when pollution from upwind sources
would impact on a kill or pass over or round, and in the latter problem to models for
estimating wind epergy where there are large downslope winds on the lee side of hills,
e.g, [10,11]. Recent research on these problems (especially the low Froud number ‘cut
off’ hill effect and lee wave generation) will now help improve the representation of
lee wave drag in large scale NWP [12]. Alio, recent research on the structure of the
stably stratified boundary layer (e.g., [12,13]), turbulence and diffusion (e.g., [14]) have
led to more reliable and physically based methods for calculating the dispersion of air
pollution, including methods for comparing difierent models [15]. However, there remain
some significant uncertainties in these methods associated with the extreme sensilivity of
stably stratified boundary layer flows to small slopes, and to changes in surface roughness
and temperature (e.g., [16]).
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Direct and Large Eddy Simulations of Stratified Homogeneous Shear Flows

Ulrich Schumann
DLR, Institute of Atmospheric Physics, 82230 Oberpfaffenhofen, Germany

Abstract

An overview is given on direct numerical simulations and on large eddy simulations of
homogeneous turbulence under the impact of shear and stable stratification. We describe the
methods used and report on results of various studies. In particular, the vortex structure of
turbulent motions is discussed. Morcover, the dynamics of statistical mean quantities is
investigated. The mean variances are compared with experimental data, The turbulent diffu-
sivity tensor for passive species in a stratified shear fiow is computed. Moreover, a simple
model is described which allows to estimate the vertical diffusivities for heat and momentum
for such flows when the vertical velocity variance or the dissipation rate are known.

1. Introduction

Stratified shear flows are important in the stratosphere, in the free stable roposphere, in !
the stable atmospheric boundary layer (ABL) over cooled surfaces, and in the ocean. See ‘
Hopfinger (1987), Fernando (1991) and Eding (1993) for reviews. In this paper, we sum-
marize briefly some recent resuits for ABLs and then concentrate on homogeneous stratified
shear flows, with uniform shear and stratification (withcut mean rotation). In the homoge-
neous case, ali turbulence statistics are independent of the spatial coordinates but vary with
time. The paper summarizes the results of various recent numerical simulations, using either
direct numerical simulation (DNS) resolving the whole spectrum of motions up to the dissi-
pating scales, or using large-eddy simulation (LES), resolving cnly the main energy and flux
cairying motion structures while the small-scale turbulent transports are approximated by a :
proper subgrid-scale (SGS) model. We will show that DNS and LES provide insight into the !
vortex structure of such flows, its basic dynamics, the vertical transport of heat and ‘
momentum, and the anisotropic diffusion of passive species.

Turbulence in stratified shear flows depends strongly on the Richardson number (Rich-
ardson, 1920). Let § denote the vertical velocity shear and s the vertical potential temperature

gradient,
S=dUldz, s=dOfdz>0, m
then the Brunt-Vaisild frequency N and the gradient Richardson number Ri are defined as
N=@gs)'2, Ri=NYS?, @

Here, B is the thermal volumetric expansion coefficient, and g is the acceleration of gravity,
As summarized by Farrel & loannou (1993), for Ri < 0.25 somewhere in the flow, small
perturbances in inviscid fluid may grow exponentially. In general one expects that existing
turbulence decays with time when Ri > 0.25. In viscous flows this limit may be smaller. But
even for Ri=O(}), transient growth of perturbations can be substantial, and may causc ‘
overturning for Ri<0.4. Turbulent motions get enhanced by shear at small Richardson |
numbers. Hence, turbulent mixing may occur under non-stationary conditions at all Rich- ‘
ardson numbers. :
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The flow state depends also on the timescale of turbulence, e.g. T = £/q, where £ denotes
the integral lengthscale and g = (2£)'? the velocity scale as a function of the kinetic energy
of trbulent motions E. (Alternative time scales may be defined in terms of the dissipation
raie € of kinetic energy.) Dimensionless numbers that relate the internal time scale to the
outer time scales S~ and N, are the shear number Sh and the inverse Froude number Fi,

Sh=St, Fi=Frl=Nt, Ri=Fi%Sh® (3)

The shear number determines the importance of mean shear relative to turbulent shear. In
strongly stratified flows, the inverse of the Froude number Fr becomes important. For Fi
greater than a critical value of about 3 turbulent mixing dies out (collapse of turbulence), see
Hopfinger (1987) and Etling (1993).

Turbulence in homogeneous shear flows has been measured by Rohr et al. (1988) in
salt-stratified water, Reliable data for homogeneous air flows are available only for neutral
stratification (Tavoularis and Karnik 1989), The early measurements by Webster (1964) were
obtained from a wind-tunnel experiment at rather low Reynolds number with notable
departure from a quasi-steady state.

Homogeneous stratified shear flows have been invectigated by DNS in Gerz et al. (1989),
Gerz and Schumann (1989, 1991) and Holt et al. (1992)., They investigated the flow
dynariyics as a function of Richardson numbers in between zero and 1.32. On present com-
puters, such simulations can be performed on grids with typically 128 grid points. For such
grids, DNS is restricted to a Prandtl number of order unity and to a turbulent Reynolds
number, based on root-mean square velocity fluctuations and Taylor's microscale, of less than
about 50. For atmospheric flows, much larger Reynolds numbers are of interest. For this
reason, the DNS method has been extended into a LES method by Kaltenbach et al. (1994).
This extends formally the Reynolds number to infinity. However, the range of resolved scales
is still limited by numerical resolution.

With respect to turbuicnce in th¢ ABL, most previous studies concentrated on the con-
vective and the neutral cases (Schumann, 1993). For comparison of various LES codes to
these cases see Nieuwstadt et al. (1993) and Andrén et al. (1994). The stablc ABL is much
more demanding becaise of smaller turbulence scales and the tendency to turbulence col-
lapse. Mason and Derbyshire (1990) showed that LES of the stable ABL. is possible, giving
resulis broadly similar to observations, and supporting the local scaling arguments of
Nieuwstadt (1984). Coleman et al. (1992) found similar results in DNS of a stable ABL at
moderate Reynolds number. Mason and Thomson (1992) raised the important issue of sto-
chastic backscatier. They showed theoretically that the subgrid parametrization should be
stochastic, and that this substantially improved LES performance in the neutral surface layer.
Recently, Brown et al. (1994) extended that work applying LES with stochastic backscatter
to the stable ABL. The forcing causes more turbulence and a deeper ABL and better agree-
ment of the velocity profile gradients with observations. For strong siratification, when the
turbulence scales with the lecal fluxes, the turbulence statistics of the ABL become directly
comparable to results from homogeneous flows.

Since DNS and LES compute the details of the three-dimensional miotions, at least in the
energetic scales, they can be used to study the vortex structure and the related transports, as
will be explained in chapier 3.1, based on the work of Rogers & Moin (1987), Gerz (1991),
Gerz et al. (1994) and others. For related discussions of other stratified shear flows, see, e.g.,
Lesieur (1993) and Staquet (1993).

Turbulent transport in stably stratified shear flow is strongly anisotropic due to forcing
of down-stream turbulent motions by shear and conversion of kinetic energy of vertical
inotions into potential energy by buoyancy forces (Richardson 1920). As a consequence,
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passive species within the flow are mixed by the wrbulent niotions much stronger in the
horizonta! direcdons than in the vertical. The relation between fluxes and gradients is
described by the turbulent diffusivity tensor which is anisotropic and asymmetric in general.
The diffusion tensor has been measured for neutral homogeneous shear flows in a wind
tunnel by Tavoularis & Corrsin (1985) and computed using DNS by Rogers et al. (1989).
For stratified turbulence, the diffusion tensor has been evaluated from DNS and LES (Kal-
tenbach et al., 1991, 1994), as will be summarized in this overview.

With respect to practical diffusion problems in stratified shear flows, the vertical diffu-
sivity component is the inost important one. For diffusion from a linear source, a Gaussian
plume model (assuming a constant but anisowropic diffusivity tensor Dy) results in second
order moments of the c